Matching Items (6)
Filtering by

Clear all filters

131510-Thumbnail Image.png
Description
Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding

Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding on a major and a career. With the development of the Engineering Interest Quiz (EIQ), the goal was to help individuals find the field of engineering that is most similar to their interests. Initially, an Engineering Faculty Survey (EFS) was created to gather information from engineering faculty at Arizona State University (ASU) and to determine keywords that describe each field of engineering. With this list of keywords, the EIQ was developed. Data from the EIQ compared the engineering students’ top three results for the best engineering discipline for them with their current engineering major of study. The data analysis showed that 70% of the respondents had their major listed as one of the top three results they were given and 30% of the respondents did not have their major listed. Of that 70%, 64% had their current major listed as the highest or tied for the highest percentage and 36% had their major listed as the second or third highest percentage. Furthermore, the EIQ data was compared between genders. Only 33% of the male students had their current major listed as their highest percentage, but 55% had their major as one of their top three results. Women had higher percentages with 63% listing their current major as their highest percentage and 81% listing it in the top three of their final results.
ContributorsWagner, Avery Rose (Co-author) / Lucca, Claudia (Co-author) / Taylor, David (Thesis director) / Miller, Cindy (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133717-Thumbnail Image.png
Description
Engineering is a heavily male-dominated field and females are significantly less likely to choose an engineering-related major or career path. At the age of six years old, females start believing that their male peers are smarter than them, leading them to pursue less ambitious careers. The children's book Lyla B.

Engineering is a heavily male-dominated field and females are significantly less likely to choose an engineering-related major or career path. At the age of six years old, females start believing that their male peers are smarter than them, leading them to pursue less ambitious careers. The children's book Lyla B. An Engineering Legacy was created to encourage more young girls to discover their own potential and pursue engineering as a career. To explore the efficacy of the book on its target consumers, a pilot study was performed with first and second grade children. The participants' engineering knowledge; fixed and failure mindset beliefs; STEM (Science, Technology, Engineering, and Math) interest, competency, and career aspirations; and stereotype beliefs were evaluated before and after being read the book to determine if the story has a positive impact on children. Additionally, the satisfaction of the participants towards both the book and main character were analyzed quantitatively and qualitatively. Overall, the results of the study suggest that the book has a positive impact on the interest and competency of STEM fields and the stereotype beliefs that the children had towards engineers. The study also suggests that the book decreases fixed and failure mindsets and that the participants were satisfied with the overall concept of the book and main character, Lyla.
ContributorsPiatak, Catherine (Co-author) / Seelhammer, Marissa Leigh (Co-author) / Torrence, Kelly (Co-author) / Miller, Cindy (Thesis director) / Jordan, Shawn (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132913-Thumbnail Image.png
Description
The goal of this study was to understand elementary school children’s perceptions of engineering. A total of 949 elementary school students were surveyed, individually or as a whole group, to examine gender and age differences in achievement-related beliefs (i.e., competency, interest, and importance) pertaining to engineering-related skills and activities. The

The goal of this study was to understand elementary school children’s perceptions of engineering. A total of 949 elementary school students were surveyed, individually or as a whole group, to examine gender and age differences in achievement-related beliefs (i.e., competency, interest, and importance) pertaining to engineering-related skills and activities. The results of this study found that specific skills and activities showed significant gender and age differences for each of the three measures. Significant findings showed that younger students (kindergarten through second grade) found many of the engineering-related skills and activities more interesting than the older students (third through fifth grade); however, the older students rated more of the skills and activities as being important. Gender differences showed that girls typically rated themselves as being more competent, more interested in, and valuing the skills and activities that pertained more to mindset ideas, such as learning from your mistakes and failures or not giving up, whereas boys rated themselves higher in more of the hands-on activities, such as building with things like legos, blocks, and k’nex.
ContributorsHandlos, Jamie Lynn Harte (Author) / Miller, Cindy (Thesis director) / Reisslein, Martin (Committee member) / School of Life Sciences (Contributor) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
152210-Thumbnail Image.png
Description
The National Research Council developed and published the Framework for K-12 Science Education, a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in

The National Research Council developed and published the Framework for K-12 Science Education, a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science standards history. With the recent development of the Framework came the arduous task of evaluating current lessons for alignment with the new crosscutting concepts. This study took on that task in a small, yet important area of available lessons on the internet. Lessons, to be used by K-12 educators and students, were produced by different organizations and research efforts. This study focused specifically on Earth science lessons as they related to earthquakes. To answer the question as to the extent current and available lessons met the new crosscutting concepts; an evaluation rubric was developed and used to examine teacher and student lessons. Lessons were evaluated on evidence of the science, engineering and application of the engineering for each of the seven crosscutting concepts in the Framework. Each lesson was also evaluated for grade level appropriateness to determine if the lesson was suitable for the intended grade level(s) designated by the lesson. The study demonstrated that the majority of lesson items contained science applications of the crosscutting concepts. However, few contained evidence of engineering applications of the crosscutting concepts. Not only was there lack of evidence for engineering examples of the crosscutting concepts, but a lack of application engineering concepts as well. To evaluate application of the engineering concepts, the activities were examined for characteristics of the engineering design process. Results indicated that student activities were limited in both the nature of the activity and the quantity of lessons that contained activities. The majority of lessons were found to be grade appropriate. This study demonstrated the need to redesign current lessons to incorporate more engineering-specific examples from the crosscutting concepts. Furthermore, it provided evidence the current model of material development was out dated and should be revised to include engineering concepts to meet the needs of the new science standards.
ContributorsSchwab, Patrick (Author) / Baker, Dale (Thesis advisor) / Semken, Steve (Committee member) / Jordan, Shawn (Committee member) / Arizona State University (Publisher)
Created2013
186267-Thumbnail Image.png
Description
The CNC mill is a highly valuable tool for engineering design, allowing for the creation of precise and complex metal parts. However, due to their high cost, many engineers do not have access to these machines until they enter industry, limiting the knowledge and experience of engineering students. This also

The CNC mill is a highly valuable tool for engineering design, allowing for the creation of precise and complex metal parts. However, due to their high cost, many engineers do not have access to these machines until they enter industry, limiting the knowledge and experience of engineering students. This also restricts the level of engineering design they can participate in as they are limited to lower strength materials and processes. To expand the possibilities for engineering students, hobbyists, and small businesses, we created a reliable and affordable desktop CNC mill. Our machine is capable of cutting non-ferrous metals such as aluminum with 70μm repeatable part precision and be compatible with coolant and vacuum systems.
ContributorsHodson, Kenneth (Author) / Altobelli, Seth (Co-author) / Jordan, Shawn (Thesis director) / Sweeney, Rhett (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2023-05
158477-Thumbnail Image.png
Description
This graduate thesis explains and discusses the background, methods, limitations, and future work of developing a low-budget, variable-length, Arduino-based robotics professional development program (PDP) for middle school or high school classrooms. This graduate thesis builds on prior undergraduate thesis work and conclusions. The main conclusions from the undergraduate thesis work

This graduate thesis explains and discusses the background, methods, limitations, and future work of developing a low-budget, variable-length, Arduino-based robotics professional development program (PDP) for middle school or high school classrooms. This graduate thesis builds on prior undergraduate thesis work and conclusions. The main conclusions from the undergraduate thesis work focused on reaching a larger teacher population along with providing a more robust robot design and construction. The end goal of this graduate thesis is to develop a PDP that reaches multiple teachers, involves a more robust robot design, and lasts beyond this developmental year. There have been many similar research studies and PDPs that have been tested and analyzed but do not fit the requirements of this graduate thesis. These programs provide some guidance in the creation of a new PDP. The overall method of the graduate thesis comes in four main phases: 1) setup, 2) pre-PDP phase, 3) PDP phase, and 4) post PDP phase. The setup focused primarily on funding, IRB approval, research, timeline development, and research question creation. The pre-PDP phase focused primarily on the development of new tailored-to-teacher content, a more robust robot design, and recruitment of participants. The PDP phase primarily focused on how the teachers perform and participate in the PDP. Lastly, the post PDP phase involved data analysis along with a resource development plan. The last post-PDP step is to consolidate all of the findings in a clear, concise, and coherent format for future work.
Contributorslerner, jonah (Author) / Carberry, Adam (Thesis advisor) / Walters, Molina (Committee member) / Jordan, Shawn (Committee member) / Arizona State University (Publisher)
Created2020