Matching Items (257)
Filtering by

Clear all filters

161818-Thumbnail Image.png
Description
Color perception has been widely studied and well modeled with respect to combining visible electromagnetic frequencies, yet new technology provides the means to better explore and test novel temporal frequency characteristics of color perception. Experiment 1 tests how reliably participants categorize static spectral rainbow colors, which can be a useful

Color perception has been widely studied and well modeled with respect to combining visible electromagnetic frequencies, yet new technology provides the means to better explore and test novel temporal frequency characteristics of color perception. Experiment 1 tests how reliably participants categorize static spectral rainbow colors, which can be a useful tool for efficiently identifying those with functional dichromacy, trichromacy, and tetrachromacy. The findings confirm that all individuals discern the four principal opponent process colors, red, yellow, green, and blue, with normal and potential tetrachromats seeing more distinct colors than color blind individuals. Experiment 2 tests the moving flicker fusion rate of the central electromagnetic frequencies within each color category found in Experiment 1 as a test of the Where system. It then compares this to the maximum temporal processing rate for discriminating direction of hue change with colors displayed serially as a test of the What system. The findings confirm respective processing thresholds of about 20 Hz for Where and 2-7 Hz for What processing systems. Experiment 3 tests conditions that optimize false colors based on the spinning Benham’s Top illusion. Findings indicate the same four principal colors emerge as in Experiment 1, but at low saturation levels for trichromats that diminish further for dichromats. Taken together, the three experiments provide an overview of the common categorical boundaries and temporal processing limits of human color vision.
ContributorsKrynen, Richard Chandler (Author) / Mcbeath, Michael K (Thesis advisor) / Homa, Donald (Committee member) / Newman, Nathan (Committee member) / Stone, Greg (Committee member) / Arizona State University (Publisher)
Created2021
161828-Thumbnail Image.png
Description
Modern radio frequency (RF) sensors are digital systems characterized by wide band frequency range, and capable to perform multi-function tasks such as: radar, electronic warfare (EW), and communications simultaneously on different sub-arrays. This demands careful understanding of the behavior of each sub-system and how each sub-array interacts with the others.

Modern radio frequency (RF) sensors are digital systems characterized by wide band frequency range, and capable to perform multi-function tasks such as: radar, electronic warfare (EW), and communications simultaneously on different sub-arrays. This demands careful understanding of the behavior of each sub-system and how each sub-array interacts with the others. A way to estimate and measure the active reflection coefficient (ARC) to calculate the active voltage standing wave ratio (VSWR) of multiple input multiple output (MIMO) radar when elements (or sub-arrays) are driven with different waveforms has been developed. This technique will help to understand and incorporate bounds in the design of MIMO systems and its waveforms to avoid damages by large power reflections and to improve system performance. The methodology developed consists of evaluating the active VSWR at each individual antenna element or sub-array from (1) estimates of the ARC by using computational electromagnetic (CEM) tools or (2) by directly measuring the ARC at each antenna element or sub-array. The former methodology is important especially at the design phase where trade offs between element shapes and geometrical configurations are taking place. The former methodology is expanded by directly measuring ARC using an experimental radar testbed Baseband-digital at Every Element MIMO Experimental Radar (BEEMER) system to assess the active VSWR, side-lobe levels and antenna pattern effects when different waveforms are transmitted. An optimization technique is implemented to mitigate the effects of the ARC in co-located MIMO radars by waveform design.
ContributorsColonDiaz, Nivia (Author) / Aberle, James T. (Thesis advisor) / Bliss, Daniel W. (Thesis advisor) / Diaz, Rodolfo (Committee member) / Janning, Dan (Committee member) / Arizona State University (Publisher)
Created2021
161909-Thumbnail Image.png
Description
Millions of people around the world daily engage in artisanal and small-scale gold mining (ASGM)––a vital part of total global gold production. For Colombia, this mining accounts for most of the precious metal’s output. It has also made Colombia, per capita, the worst mercury-polluted country in the world. Though cleaner,

Millions of people around the world daily engage in artisanal and small-scale gold mining (ASGM)––a vital part of total global gold production. For Colombia, this mining accounts for most of the precious metal’s output. It has also made Colombia, per capita, the worst mercury-polluted country in the world. Though cleaner, safer, and more effective methods exist, miners yet opt for mercury-use. Any success with interventions in technology, capacitation, or policy has been limited. This dissertation attends to mercury-use in ASGM in Antioquia, Colombia, via two gaps: a descriptive one (i.e., a failure to pay attention to, and to describe, actual practices in ASGM); and, a theoretical one (i.e., explanations as to why some decisions, including but not limited to policy, succeed or fail). In addition to an ecology of practices, embodiment, and situated knowledges, phenomenological interviews with stakeholders illuminate critical lived experience, as well as whether or how it is possible to reduce mercury-use and contamination. Furthermore, a novel application of speculative sound supplements this work. Finally, key findings complement existing scholarship. The presence of gold drives mining, but an increase in mining comes at a cost. Miners know mercury is hazardous, but mining legally, or formally, has proven too onerous. So, mercury-use persists: it is profitable, and the effects on human health can seem delayed. The state is pivotal to change in mercury-use, but its approach has been punitive. Change will invariably require greater attention to the lived experiences of miners.
ContributorsPimentel, Matthew (Author) / Fonow, Mary Margaret (Thesis advisor) / Parmentier, Mary Jane (Thesis advisor) / Coleman, Grisha (Committee member) / Arizona State University (Publisher)
Created2021
161712-Thumbnail Image.png
Description
This dissertation studies the methods to enhance the performance of foldable robots manufactured by laminated techniques. This class of robots are unique in their manufacturing process, which involves cutting and staking up thin layers of different materials with various stiffness. While inheriting the advantages of soft robots -- low

This dissertation studies the methods to enhance the performance of foldable robots manufactured by laminated techniques. This class of robots are unique in their manufacturing process, which involves cutting and staking up thin layers of different materials with various stiffness. While inheriting the advantages of soft robots -- low weight, affordable manufacturing cost and a fast prototyping process -- a wider range of actuators is available to these mechanisms, while modeling their behavior requires less computational cost.The fundamental question this dissertation strives to answer is how to decode and leverage the effect of material stiffness in these robots. These robots' stiffness is relatively limited due to their slender design, specifically at larger scales. While compliant robots may have inherent advantages such as being safer to work around, this low rigidity makes modeling more complex. This complexity is mostly contained in material deformation since the conventional actuators such as servo motors can be easily leveraged in these robots. As a result, when introduced to real-world environments, efficient modeling and control of these robots are more achievable than conventional soft robots. Various approaches have been taken to design, model, and control a variety of laminate robot platforms by investigating the effect of material deformation in prototypes while they interact with their working environments. The results obtained show that data-driven approaches such as experimental identification and machine learning techniques are more reliable in modeling and control of these mechanisms. Also, machine learning techniques for training robots in non-ideal experimental setups that encounter the uncertainties of real-world environments can be leveraged to find effective gaits with high performance. Our studies on the effect of stiffness of thin, curved sheets of materials has evolved into introducing a new class of soft elements which we call Soft, Curved, Reconfigurable, Anisotropic Mechanisms (SCRAMs). Like bio-mechanical systems, SCRAMs are capable of re-configuring the stiffness of curved surfaces to enhance their performance and adaptability. Finally, the findings of this thesis show promising opportunities for foldable robots to become an alternative for conventional soft robots since they still offer similar advantages in a fraction of computational expense.
ContributorsSharifzadeh, Mohammad (Author) / Aukes, Daniel (Thesis advisor) / Sugar, Thomas (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
161763-Thumbnail Image.png
Description
Granular materials demonstrate complexity in many physical attributes with various shapes and sizes, varying from several centimeters down to less than a few microns. Some materials are highly cohesive, while others are free-flowing. Despite such complexity in their physical properties, they are extremely important in industries dealing with bulk materials.

Granular materials demonstrate complexity in many physical attributes with various shapes and sizes, varying from several centimeters down to less than a few microns. Some materials are highly cohesive, while others are free-flowing. Despite such complexity in their physical properties, they are extremely important in industries dealing with bulk materials. Through this research, the factors affecting flowability of particulate solids and their interaction with projectiles were explored. In Part I, a novel set of characterization tools to relate various granular material properties to their flow behavior in confined and unconfined environments was investigated. Through this work, a thorough characterization study to examine the effects of particle size, particle size distribution, and moisture on bulk powder flowability were proposed. Additionally, a mathematical model to predict the flow function coefficient (FFC) was developed, based on the surface mean diameter and moisture level, which can serve as a flowability descriptor. Part II of this research focuses on the impact dynamics of low velocity projectiles on granular media. Interaction of granular media with external foreign bodies occurs in everyday events like a human footprint on the beach. Several studies involving numerical and experimental methods have focused on the study of impact dynamics in both dry and wet granular media. However, most of the studies involving impact dynamics considered spherical projectiles under different conditions, while practical models should involve more complex, realistic shapes. Different impacting geometries with conserved density, volume, and velocity on a granular bed may experience contrasting drag forces upon penetration. This is due to the difference in the surface areas coming into contact with the granular media. In this study, a set of non-spherical geometries comprising cuboids, cylinders, hexagonal prisms and triangular prisms with constant density, volume, and impact velocities, were released onto a loosely packed, non-cohesive, dry granular bed. From these experimental results, a model to determine the penetration depth of projectiles upon impact was developed and how it is influenced by the release height and surface area of the projectiles in contact with the granular media was studied.
ContributorsVajrala, Spandana (Author) / Emady, Heather N (Thesis advisor) / Marvi, Hamidreza (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021
161961-Thumbnail Image.png
Description
Organic materials have emerged as an attractive component of electronics over the past few decades, particularly in the development of efficient and stable organic light-emitting diodes (OLEDs) and organic neuromorphic devices. The electrical, chemical, physical, and optical studies of organic materials and their corresponding devices have been conducted for efficient

Organic materials have emerged as an attractive component of electronics over the past few decades, particularly in the development of efficient and stable organic light-emitting diodes (OLEDs) and organic neuromorphic devices. The electrical, chemical, physical, and optical studies of organic materials and their corresponding devices have been conducted for efficient and stable electronics. The development of efficient and stable deep blue OLED devices remains a challenge that has obstructed the progress of large-scale OLED commercialization. One approach was taken to achieve a deep blue emitter through a color tuning strategy. A new complex, PtNONS56-dtb, was designed and synthesized by controlling the energy gap between T1 and T2 energy states to achieve narrowed and blueshifted emission spectra. This emitter material showed an emission spectrum at 460 nm with a FWHM of 59 nm at room temperature in PMMA, and the PtNONS56-dtb-based device exhibited a peak EQE of 8.5% with CIE coordinates of (0.14, 0.27). A newly developed host and electron blocking materials were demonstrated to achieve efficient and stable OLED devices. The indolocarbazole-based materials were designed to have good hole mobility and high triplet energy. BCN34 as an electron blocking material achieved the estimated LT80 of 12509 h at 1000 cd m-2 with a peak EQE of 30.3% in devices employing Pd3O3 emitter. Additionally, a device with bi-layer emissive layer structure, using BCN34 and CBP as host materials doped with PtN3N emitter, achieved a peak EQE of 16.5% with the LT97 of 351 h at 1000 cd m-2. A new neuromorphic device using Ru(bpy)3(PF6)2 as an active layer was designed to emulate the short-term characteristics of a biological synapse. This memristive device showed a similar operational mechanism with biological synapse through the movement of ions and electronic charges. Furthermore, the performance of the device showed tunability by adding salt. Ultimately, the device with 2% LiClO4 salt shows similar timescales to short-term plasticity characteristics of biological synapses.
ContributorsShin, Samuel (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2021
153551-Thumbnail Image.png
Description
An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems

An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings.

This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.’s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.
ContributorsKarizi, Nasim (Author) / Reddy, T. Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Dasgupta, Partha (Committee member) / Kroelinger, Michael D. (Committee member) / Arizona State University (Publisher)
Created2015
153561-Thumbnail Image.png
Description
Currently in the US, many patients with cancer do not benefit from the population-based screening, due to challenges associated with the existing cancer screening scheme. Blood-based diagnostic assays have the potential to detect diseases in a non-invasive way. Proteins released from small early tumors may only be present intermittently and

Currently in the US, many patients with cancer do not benefit from the population-based screening, due to challenges associated with the existing cancer screening scheme. Blood-based diagnostic assays have the potential to detect diseases in a non-invasive way. Proteins released from small early tumors may only be present intermittently and get diluted to tiny concentrations in the blood, making them difficult to use as biomarkers. However, they can induce autoantibody (AAb) responses, which can amplify the signal and persist in the blood even if the antigen is gone. Circulating autoantibodies is a promising class of molecules that have potential to serve as early detection biomarkers for cancers. This Ph.D thesis aims to screen for autoantibody biomarkers for the early detection of two deadly cancer, basal-like breast cancer and lung adenocarcinoma. First, a method was developed to display proteins in both native and denatured conformation on protein array. This method adopted a novel protein tag technology, called HaloTag, to covalently immobilize proteins on glass slide surface. The covalent attachment allowed these proteins to endure harsh treatment without getting dissociated from slide surface, which enabled the profiling of antibody responses against both conformational and linear epitopes. Next, a plasma screening protocol was optimized to significantly increase signal to noise ratio of protein array based AAb detection. Following this, the AAb responses in basal-like breast cancer were explored using nucleic acid programmable protein arrays (NAPPA) containing 10,000 full-length human proteins in 45 cases and 45 controls. After verification in a large sample set (145 basal-like breast cancer cases / 145 controls / 70 non-basal breast cancer) by ELISA, a 13-AAb classifier was developed to differentiate patients from controls with a sensitivity of 33% at 98% specificity. Similar approach was also applied to the lung cancer study to identify AAbs that distinguished lung cancer patients from computed-tomography positive benign pulmonary nodules (137 lung cancer cases, 127 smoker controls, 170 benign controls). In this study, two panels of AAbs were discovered that showed promising sensitivity and specificity. Six out of eight AAb targets were also found to have elevated mRNA level in lung adenocarcinoma patients using TCGA data. These projects as a whole provide novel insights on the association between AAbs and cancer, as well as general B cell antigenicity against self-proteins.
ContributorsWang, Jie (Author) / LaBaer, Joshua (Thesis advisor) / Anderson, Karen S (Committee member) / Lake, Douglas F (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2015
153926-Thumbnail Image.png
Description
One of the most remarkable outcomes resulting from the evolution of the web into Web 2.0, has been the propelling of blogging into a widely adopted and globally accepted phenomenon. While the unprecedented growth of the Blogosphere has added diversity and enriched the media, it has also added complexity. To

One of the most remarkable outcomes resulting from the evolution of the web into Web 2.0, has been the propelling of blogging into a widely adopted and globally accepted phenomenon. While the unprecedented growth of the Blogosphere has added diversity and enriched the media, it has also added complexity. To cope with the relentless expansion, many enthusiastic bloggers have embarked on voluntarily writing, tagging, labeling, and cataloguing their posts in hopes of reaching the widest possible audience. Unbeknown to them, this reaching-for-others process triggers the generation of a new kind of collective wisdom, a result of shared collaboration, and the exchange of ideas, purpose, and objectives, through the formation of associations, links, and relations. Mastering an understanding of the Blogosphere can greatly help facilitate the needs of the ever growing number of these users, as well as producers, service providers, and advertisers into facilitation of the categorization and navigation of this vast environment. This work explores a novel method to leverage the collective wisdom from the infused label space for blog search and discovery. The work demonstrates that the wisdom space can provide a most unique and desirable framework to which to discover the highly sought after background information that could aid in the building of classifiers. This work incorporates this insight into the construction of a better clustering of blogs which boosts the performance of classifiers for identifying more relevant labels for blogs, and offers a mechanism that can be incorporated into replacing spurious labels and mislabels in a multi-labeled space.
ContributorsGalan, Magdiel F (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015
168518-Thumbnail Image.png
Description
By the evolution of technologies and computing power, it is possible to capture and save large amounts of data and then find patterns in large and complex datasets using data science and machine learning. This dissertation introduces machine-learning models and econometric models to use in infrastructure transportation projects. Among transportation

By the evolution of technologies and computing power, it is possible to capture and save large amounts of data and then find patterns in large and complex datasets using data science and machine learning. This dissertation introduces machine-learning models and econometric models to use in infrastructure transportation projects. Among transportation infrastructure projects, the airline industry and highways are selected to implement the models.The first topic of this dissertation focuses on using machine-learning models in highway projects. The International Roughness Index (IRI) for asphalt concrete pavement is predicted based on the 12,637 observations in the Long-Term Pavement Performance (LTPP) dataset for 1,390 roads and highways in the 50 states of the United States and the District of Columbia from 1989 to 2018. The results show that XGBoost provides a better model fit in terms of mean absolute error and coefficient of determination than other studied models. Also, the most important factors in predicting the IRI are identified. The second topic of this dissertation aims to develop machine-learning models to predict customer dissatisfaction in the airline industry. The relationship between measures of service failure (flight delay and mishandled baggage) and customer dissatisfaction is predicted by using longitudinal data from 2003 to 2019 from the U.S. airline industry. Data was obtained from the Air Travel Consumer Report (ATCR) published by the U.S. Department of Transportation. Flight delay is more important in low-cost airlines, while mishandled baggage is more important in legacy airlines. Also, the effect of the train-test split ratio on each machine-learning model is examined by running each model using four train-test splits. Results indicate that the train-test split ratio could influence the selection of the best model. The third topic in this dissertation uses econometric analysis to investigate the relationship between customer dissatisfaction and two measures of service failure in the U.S. airline industry. Results are: 1) Mishandled baggage has more impact than flight delay on customer complaints. 2) The effect of an airline’s service failures on customer complaints is contingent on the category of the airline. 3) The effect of flight delay on customer complaints is lower for low-cost airlines compared to legacy airlines.
ContributorsDamirchilo, Farshid (Author) / Fini, Elham H (Thesis advisor) / Lamanna, Anthony J (Committee member) / Parast, Mahour M (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2021