Matching Items (1)
Filtering by

Clear all filters

133151-Thumbnail Image.png
Description
Fermentative bioproduction is an efficient production avenue for many small organic acids with less greenhouse gas emissions than petrochemical conversion. Export of these organic acids from the cell is proposed to be mediated by networks of transmembrane transport proteins. However characterization of full transporter networks or the substrate promiscuity of

Fermentative bioproduction is an efficient production avenue for many small organic acids with less greenhouse gas emissions than petrochemical conversion. Export of these organic acids from the cell is proposed to be mediated by networks of transmembrane transport proteins. However characterization of full transporter networks or the substrate promiscuity of individual transporters is often incomplete. Here, we used a cheminformatic approach to predict previously unknown native activity of E. coli transporters based on substrate promiscuity. Experimental validation in characterized several major putative malate exporters, whereas others were characterized as weak putative lactate exporters. The lactate export network remains incompletely characterized and might be mediated by a large, evolved network of promiscuous transporters.
ContributorsSchneider, Aidan (Author) / Wang, Xuan (Thesis director) / Varman, Arul (Committee member) / Nielsen, David (Committee member) / Department of Finance (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12