Matching Items (6)
Filtering by

Clear all filters

132175-Thumbnail Image.png
Description
The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the

The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the energy output from solar. One such recently researched wide band gap absorber is ZnSnN2. ZnSnN2 proves too difficult to form under most conditions, but has the necessary band gap to make it a potential earth abundant solar absorber. The deposition process for ZnSnN2 is usually conducted with Zn and Sn metal targets while flowing N2 gas. Due to restrictions with chamber depositions, instead ZnO and SnO2 targets were sputtered with N2 gas to attempt to form separate zinc and tin oxynitrides as an initial single target study prior to future combinatorial studies. The electrical and optical properties and crystal structure of these thin films were analyzed to determine the nitrogen incorporation in the thin films through X-ray diffraction, UV-Vis spectrophotometry, and 4-point probe measurements. The SnO2 thin films showed a clear response in the absorption coefficient leading but showed no observable XRD peak shift. Thus, it is unlikely that substantial amounts of nitrogen were incorporated into SnO¬2. ZnO showed a clear response increase in conductivity with N2 with an additional shift in the XRD peak at 300 °C and potential secondary phase peak. Nitrogen incorporation was achieved with fair amounts of certainty for the ZnO thin films.
ContributorsTheut, Nicholas C (Author) / Bertoni, Mariana (Thesis director) / Holman, Zachary (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134959-Thumbnail Image.png
Description
To compete with fossil fuel electricity generation, there is a need for higher efficiency solar cells to produce renewable energy. Currently, this is the best way to lower generation costs and the price of energy [1]. The goal of this Barrett Honors Thesis is to design an optical coating model

To compete with fossil fuel electricity generation, there is a need for higher efficiency solar cells to produce renewable energy. Currently, this is the best way to lower generation costs and the price of energy [1]. The goal of this Barrett Honors Thesis is to design an optical coating model that has five or fewer layers (with varying thickness and refractive index, within the above range) and that has the maximum reflectance possible between 950 and 1200 nanometers for normally incident light. Manipulating silicon monolayers to become efficient inversion layers to use in solar cells aligns with the Ira. A Fulton Schools of Engineering research themes of energy and sustainability [2]. Silicon monolayers could be specifically designed for different doping substrates. These substrates could range from common-used materials such as boron and phosphorus, to rare-earth doped zinc oxides or even fullerene blends. Exploring how the doping material, and in what quantity, affects solar cell energy output could revolutionize the current production methods and commercial market. If solar cells can be manufactured more economically, yet still retain high efficiency rates, then more people will have access to alternate, "green" energy that does not deplete nonrenewable resources.
ContributorsSanford, Kari Paige (Author) / Holman, Zachary (Thesis director) / Weigand, William (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
187528-Thumbnail Image.png
Description
The metallization and interconnection of Si photovoltaic (PV) devices are among some of the most critically important aspects to ensure the PV cells and modules are cost-effective, highly-efficient, and robust through environmental stresses. The aim of this work is to contribute to the development of these innovations to move them

The metallization and interconnection of Si photovoltaic (PV) devices are among some of the most critically important aspects to ensure the PV cells and modules are cost-effective, highly-efficient, and robust through environmental stresses. The aim of this work is to contribute to the development of these innovations to move them closer to commercialization.Shingled PV modules and laser-welded foil-interconnected modules present an alternative to traditional soldered ribbons that can improve module power densities in a cost-effective manner. These two interconnection methods present new technical challenges for the PV industry. This work presents x-ray imaging methods to aid in the process-optimization of the application and curing of the adhesive material used in shingled modules. Further, detailed characterization of laser welds, their adhesion, and their effect on module performances is conducted. A strong correlation is found between the laser-weld adhesion and the modules’ durability through thermocycling. A minimum laser weld adhesion of 0.8 mJ is recommended to ensure a robust interconnection is formed. Detailed characterization and modelling are demonstrated on a 21% efficient double-sided tunnel-oxide passivating contact (DS-TOPCon) cell. This technology uses a novel approach that uses the front-metal grid to etch-away the parasitically-absorbing poly-Si material everywhere except for underneath the grid fingers. The modelling yielded a match to the experimental device within 0.06% absolute of its efficiency. This DS-TOPCon device could be improved to a 23.45%-efficient device by improving the optical performance, n-type contact resistivity, and grid finger aspect ratio. Finally, a modelling approach is explored for simulating Si thermophotovoltaic (TPV) devices. Experimentally fabricated diffused-junction devices are used to validate the optical and electrical aspects of the model. A peak TPV efficiency of 6.8% is predicted for the fabricated devices, but a pathway to 32.5% is explained by reducing the parasitic absorption of the contacts and reducing the wafer thickness. Additionally, the DS-TOPCon technology shows the potential for a 33.7% efficient TPV device.
ContributorsHartweg, Barry (Author) / Holman, Zachary (Thesis advisor) / Chan, Candace (Committee member) / Bertoni, Mariana (Committee member) / Yu, Zhengshan (Committee member) / Arizona State University (Publisher)
Created2023
154875-Thumbnail Image.png
Description
Layers of intrinsic hydrogenated amorphous silicon and amorphous silicon carbide

were prepared on a polished, intrinsic crystalline silicon substrate via plasma-enhanced chemical vapor deposition to simulate heterojunction device relevant stacks of various materials. The minority carrier lifetime, optical band gap and FTIR spectra were observed at incremental stages of thermal annealing.

Layers of intrinsic hydrogenated amorphous silicon and amorphous silicon carbide

were prepared on a polished, intrinsic crystalline silicon substrate via plasma-enhanced chemical vapor deposition to simulate heterojunction device relevant stacks of various materials. The minority carrier lifetime, optical band gap and FTIR spectra were observed at incremental stages of thermal annealing. By observing the changes in the lifetimes the sample structure responsible for the most thermally robust surface passivation could be determined. These results were correlated to the optical band gap and the position and relative area of peaks in the FTIR spectra related to to silicon-hydrogen bonds in the layers. It was found that due to an increased presence of hydrogen bonded to silicon at voids within the passivating layer, hydrogenated amorphous silicon carbide at the interface of the substrate coupled with a hydrogenated amorphous silicon top layer provides better passivation after high temperature annealing than other device structures.
ContributorsJackson, Alec James (Author) / Holman, Zachary (Thesis advisor) / Bertoni, Mariana (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2016
153449-Thumbnail Image.png
Description
In this thesis, a novel silica nanosphere (SNS) lithography technique has been developed to offer a fast, cost-effective, and large area applicable nano-lithography approach. The SNS can be easily deposited with a simple spin-coating process after introducing a N,N-dimethyl-formamide (DMF) solvent which can produce a highly close packed SNS monolayer

In this thesis, a novel silica nanosphere (SNS) lithography technique has been developed to offer a fast, cost-effective, and large area applicable nano-lithography approach. The SNS can be easily deposited with a simple spin-coating process after introducing a N,N-dimethyl-formamide (DMF) solvent which can produce a highly close packed SNS monolayer over large silicon (Si) surface area, since DMF offers greatly improved wetting, capillary and convective forces in addition to slow solvent evaporation rate. Since the period and dimension of the surface pattern can be conveniently changed and controlled by introducing a desired size of SNS, and additional SNS size reduction with dry etching process, using SNS for lithography provides a highly effective nano-lithography approach for periodically arrayed nano-/micro-scale surface patterns with a desired dimension and period. Various Si nanostructures (i.e., nanopillar, nanotip, inverted pyramid, nanohole) are successfully fabricated with the SNS nano-lithography technique by using different etching technique like anisotropic alkaline solution (i.e., KOH) etching, reactive-ion etching (RIE), and metal-assisted chemical etching (MaCE).

In this research, computational optical modeling is also introduced to design the Si nanostructure, specifically nanopillars (NPs) with a desired period and dimension. The optical properties of Si NP are calculated with two different optical modeling techniques, which are the rigorous coupled wave analysis (RCWA) and finite-difference time-domain (FDTD) methods. By using these two different optical modeling techniques, the optical properties of Si NPs with different periods and dimensions have been investigated to design ideal Si NP which can be potentially used for thin c-Si solar cell applications. From the results of the computational and experimental work, it was observed that low aspect ratio Si NPs fabricated in a periodic hexagonal array can provide highly enhanced light absorption for the target spectral range (600 ~ 1100nm), which is attributed to (1) the effective confinement of resonant scattering within the Si NP and (2) increased high order diffraction of transmitted light providing an extended absorption length. From the research, therefore, it is successfully demonstrated that the nano-fabrication process with SNS lithography can offer enhanced lithographical accuracy to fabricate desired Si nanostructures which can realize enhanced light absorption for thin Si solar cell.
ContributorsChoi, JeaYoung (Author) / Honsberg, Christiana (Thesis advisor) / Alford, Terry (Thesis advisor) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
158708-Thumbnail Image.png
Description
An ongoing effort in the photovoltaic (PV) industry is to reduce the major manufacturing cost components of solar cells, the great majority of which are based on crystalline silicon (c-Si). This includes the substitution of screenprinted silver (Ag) cell contacts with alternative copper (Cu)-based contacts, usually applied with plating. Plated

An ongoing effort in the photovoltaic (PV) industry is to reduce the major manufacturing cost components of solar cells, the great majority of which are based on crystalline silicon (c-Si). This includes the substitution of screenprinted silver (Ag) cell contacts with alternative copper (Cu)-based contacts, usually applied with plating. Plated Cu contact schemes have been under study for many years with only minor traction in industrial production. One of the more commonly-cited barriers to the adoption of Cu-based contacts for photovoltaics is long-term reliability, as Cu is a significant contaminant in c-Si, forming precipitates that degrade performance via degradation of diode character and reduction of minority carrier lifetime. Cu contamination from contacts might cause degradation during field deployment if Cu is able to ingress into c-Si. Furthermore, Cu contamination is also known to cause a form of light-induced degradation (LID) which further degrades carrier lifetime when cells are exposed to light.

Prior literature on Cu-contact reliability tended to focus on accelerated testing at the cell and wafer level that may not be entirely replicative of real-world environmental stresses in PV modules. This thesis is aimed at advancing the understanding of Cu-contact reliability from the perspective of quasi-commercial modules under more realistic stresses. In this thesis, c-Si solar cells with Cu-plated contacts are fabricated, made into PV modules, and subjected to environmental stress in an attempt to induce hypothesized failure modes and understand any new vulnerabilities that Cu contacts might introduce. In particular, damp heat stress is applied to conventional, p-type c-Si modules and high efficiency, n-type c-Si heterojunction modules. I present evidence of Cu-induced diode degradation that also depends on PV module materials, as well as degradation unrelated to Cu, and in either case suggest engineering solutions to the observed degradation. In a forensic search for degradation mechanisms, I present novel evidence of Cu outdiffusion from contact layers and encapsulant-driven contact corrosion as potential key factors. Finally, outdoor exposures to light uncover peculiarities in Cu-plated samples, but do not point to especially serious vulnerabilities.
ContributorsKaras, Joseph (Author) / Bowden, Stuart (Thesis advisor) / Alford, Terry (Thesis advisor) / Tamizhmani, Govindasamy (Committee member) / Michaelson, Lynne (Committee member) / Arizona State University (Publisher)
Created2020