Matching Items (9)
Filtering by

Clear all filters

152025-Thumbnail Image.png
Description
At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis

At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.
ContributorsPrakash, Nitin (Author) / Heydt, Gerald T. (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
151276-Thumbnail Image.png
Description
This thesis presents a new technique to develop an air-conditioner (A/C) compressor single phase induction motor model for use in an electro-magnetic transient program (EMTP) simulation tool. The method developed also has the capability to represent multiple units of the component in a specific three-phase distribution feeder and investigate the

This thesis presents a new technique to develop an air-conditioner (A/C) compressor single phase induction motor model for use in an electro-magnetic transient program (EMTP) simulation tool. The method developed also has the capability to represent multiple units of the component in a specific three-phase distribution feeder and investigate the phenomenon of fault-induced delayed voltage recovery (FIDVR) and the cause of motor stalling. The system of differential equations representing the single phase induction motor model is developed and formulated. Implicit backward Euler method is applied to numerically integrate the stator currents that are to be drawn from the electric network. The angular position dependency of the rotor shaft is retained in the inductance matrix associated with the model to accurately capture the dynamics of the motor loads. The equivalent circuit of the new model is interfaced with the electric network in the EMTP. The dynamic response of the motor when subjected to faults at different points on voltage waveform has been studied using the EMTP simulator. The mechanism and the impacts of motor stalling need to be explored with multiple units of the detailed model connected to a realistic three-phase distribution system. The model developed can be utilized to assess and improve the product design of compressor motors by air-conditioner manufacturers. Another critical application of the model would be to examine the impacts of asymmetric transmission faults on distribution systems to investigate and develop mitigation measures for the FIDVR problem.
ContributorsLiu, Yuan (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2012
151546-Thumbnail Image.png
Description
Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types

Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types of services have been analyzed considering current market pricing of Lithium-ion batteries and power conditioning equipment. Energy Storage Valuation Tool 3.0 (Beta) has been used to exclusively determine the value of energy storage in the services analyzed. The results indicate that on the residential level, Lithium-ion battery energy storage may not be a cost beneficial option for retail tariff management or demand charge management as only 20-30% of the initial investment is recovered at the end of 15 year plant life. SRP's two retail Time-of-Use price plans E-21 and E-26 were analyzed in respect of their ability to increase returns from storage compared to those with flat pricing. It was observed that without a coupled PV component, E-21 was more suitable for customer premises energy storage, however, its revenue stream reduces with addition to PV. On the grid scale, however, with carefully chosen service hierarchy such as distribution investment deferral, spinning or balancing reserve support, the initial investment can be recovered to an extent of about 50-70%. The study done here is specific to Salt River Project inputs and data. Results for all the services analyzed are highly location specific and are only indicative of the overall viability and returns from them.
ContributorsNadkarni, Aditya (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
150856-Thumbnail Image.png
Description
Voltage stability is always a major concern in power system operation. Recently Fault Induced Delayed Voltage Recovery (FIDVR) has gained increased attention. It is widely believed that the motor-driven loads of high efficiency, low inertia air conditioners are one of the main causes of FIDVR events. Simulation tools that assist

Voltage stability is always a major concern in power system operation. Recently Fault Induced Delayed Voltage Recovery (FIDVR) has gained increased attention. It is widely believed that the motor-driven loads of high efficiency, low inertia air conditioners are one of the main causes of FIDVR events. Simulation tools that assist power system operation and planning have been found insufficient to reproduce FIDVR events. This is because of their inaccurate load modeling of single-phase motor loads. Conventionally three-phase motor models have been used to represent the aggregation effect of single-phase motor load. However researchers have found that this modeling method is far from an accurate representation of single-phase induction motors. In this work a simulation method is proposed to study the precise influence of single-phase motor load in context of FIDVR. The load, as seen the transmission bus, is replaced with a detailed distribution system. Each single-phase motor in the distribution system is represented by an equipment-level model for best accuracy. This is to enable the simulation to capture stalling effects of air conditioner compressor motors as they are related to FIDVR events. The single phase motor models are compared against the traditional three phase aggregate approximation. Also different percentages of single-phase motor load are compared and analyzed. Simulation result shows that proposed method is able to reproduce FIDVR events. This method also provides a reasonable estimation of the power system voltage stability under the contingencies.
ContributorsMa, Yan (Author) / Karady, George G. (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2012
154051-Thumbnail Image.png
Description
The demand for cleaner energy technology is increasing very rapidly. Hence it is

important to increase the eciency and reliability of this emerging clean energy technologies.

This thesis focuses on modeling and reliability of solar micro inverters. In

order to make photovoltaics (PV) cost competitive with traditional energy sources,

the economies of scale have

The demand for cleaner energy technology is increasing very rapidly. Hence it is

important to increase the eciency and reliability of this emerging clean energy technologies.

This thesis focuses on modeling and reliability of solar micro inverters. In

order to make photovoltaics (PV) cost competitive with traditional energy sources,

the economies of scale have been guiding inverter design in two directions: large,

centralized, utility-scale (500 kW) inverters vs. small, modular, module level (300

W) power electronics (MLPE). MLPE, such as microinverters and DC power optimizers,

oer advantages in safety, system operations and maintenance, energy yield,

and component lifetime due to their smaller size, lower power handling requirements,

and module-level power point tracking and monitoring capability [1]. However, they

suer from two main disadvantages: rst, depending on array topology (especially

the proximity to the PV module), they can be subjected to more extreme environments

(i.e. temperature cycling) during the day, resulting in a negative impact to

reliability; second, since solar installations can have tens of thousands to millions of

modules (and as many MLPE units), it may be dicult or impossible to track and

repair units as they go out of service. Therefore identifying the weak links in this

system is of critical importance to develop more reliable micro inverters.

While an overwhelming majority of time and research has focused on PV module

eciency and reliability, these issues have been largely ignored for the balance

of system components. As a relatively nascent industry, the PV power electronics

industry does not have the extensive, standardized reliability design and testing procedures

that exist in the module industry or other more mature power electronics

industries (e.g. automotive). To do so, the critical components which are at risk and

their impact on the system performance has to be studied. This thesis identies and

addresses some of the issues related to reliability of solar micro inverters.

This thesis presents detailed discussions on various components of solar micro inverter

and their design. A micro inverter with very similar electrical specications in

comparison with commercial micro inverter is modeled in detail and veried. Components

in various stages of micro inverter are listed and their typical failure mechanisms

are reviewed. A detailed FMEA is conducted for a typical micro inverter to identify

the weak links of the system. Based on the S, O and D metrics, risk priority number

(RPN) is calculated to list the critical at-risk components. Degradation of DC bus

capacitor is identied as one the failure mechanism and the degradation model is built

to study its eect on the system performance. The system is tested for surge immunity

using standard ring and combinational surge waveforms as per IEEE 62.41 and

IEC 61000-4-5 standards. All the simulation presented in this thesis is performed

using PLECS simulation software.
ContributorsManchanahalli Ranganatha, Arkanatha Sastry (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2015
154851-Thumbnail Image.png
Description
This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power

This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power consumptions with respect to frequency and voltage perturbations. This level of linearized performance-based model is suitable for the investigation of the damping of small-magnitude low-frequency oscillations. The complete transient model is proposed by decomposing the motor, converter and control models into d-q axes components and developing a compatible electrical interface to the positive-sequence network in the PSTS simulators. The complete transient drive model is primarily used to examine the system response subject to transient voltage depression considering increasing penetration of converter-driven motor loads.

For developing the performance-based model, modulations are performed on the supply side of the full drive system to procure magnitude and phase responses of active and reactive powers with respect to the supply voltage and frequency for a range of discrete frequency points. The prediction error minimization (PEM) technique is utilized to generate the curve-fitted transfer functions and corresponding bode plots. For developing the complete drive model in the PSTS simulation program, a positive-sequence voltage source is defined properly as the interface of the model to the external system. The dc-link of the drive converter is implemented by employing the average model of the PWM converter, and is utilized to integrate the line-side rectifier and machine-side inverter.

Numerical simulation is then conducted on sample test systems, synthesized with suitable characteristics to examine performance of the developed models. The simulation results reveal that with growing amount of drive loads being distributed in the system, the small-signal stability of the system is improved in terms of the desirable damping effects on the low-frequency system oscillations of voltage and frequency. The transient stability of the system is also enhanced with regard to the stable active power and reactive power controls of the loads, and the appropriate VAr support capability provided by the drive loads during a contingency.
ContributorsLiu, Yuan (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2016
155042-Thumbnail Image.png
Description
The past decades have seen a significant shift in the expectations and requirements re-lated to power system analysis tools. Investigations into major power grid disturbances have suggested the need for more comprehensive assessment methods. Accordingly, sig-nificant research in recent years has focused on the development of better power system models

The past decades have seen a significant shift in the expectations and requirements re-lated to power system analysis tools. Investigations into major power grid disturbances have suggested the need for more comprehensive assessment methods. Accordingly, sig-nificant research in recent years has focused on the development of better power system models and efficient techniques for analyzing power system operability. The work done in this report focusses on two such topics

1. Analysis of load model parameter uncertainty and sensitivity based pa-rameter estimation for power system studies

2. A systematic approach to n-1-1 analysis for power system security as-sessment

To assess the effect of load model parameter uncertainty, a trajectory sensitivity based approach is proposed in this work. Trajectory sensitivity analysis provides a sys-tematic approach to study the impact of parameter uncertainty on power system re-sponse to disturbances. Furthermore, the non-smooth nature of the composite load model presents some additional challenges to sensitivity analysis in a realistic power system. Accordingly, the impact of the non-smooth nature of load models on the sensitivity analysis is addressed in this work. The study was performed using the Western Electrici-ty Coordinating Council (WECC) system model. To address the issue of load model pa-rameter estimation, a sensitivity based load model parameter estimation technique is presented in this work. A detailed discussion on utilizing sensitivities to improve the ac-curacy and efficiency of the parameter estimation process is also presented in this work.

Cascading outages can have a catastrophic impact on power systems. As such, the NERC transmission planning (TPL) standards requires utilities to plan for n¬-1-1 out-ages. However, such analyses can be computationally burdensome for any realistic pow-er system owing to the staggering number of possible n-1-1 contingencies. To address this problem, the report proposes a systematic approach to analyze n-1-1 contingencies in a computationally tractable manner for power system security assessment. The pro-posed approach addresses both static and dynamic security assessment. The proposed methods have been tested on the WECC system.
ContributorsMitra, Parag (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Committee member) / Ayyanar, Raja (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2016
171852-Thumbnail Image.png
Description
The past few years have witnessed a significant growth of distributed energy resources (DERs) in power systems at the customer level. Such growth challenges the traditional centralized model of conventional synchronous generation, making a transition to a decentralized network with a significant increase of DERs. This decentralized network requires a

The past few years have witnessed a significant growth of distributed energy resources (DERs) in power systems at the customer level. Such growth challenges the traditional centralized model of conventional synchronous generation, making a transition to a decentralized network with a significant increase of DERs. This decentralized network requires a paradigm change in modeling distribution systems in more detail to maintain the reliability and efficiency while accommodating a high level of DERs. Accurate models of distribution feeders, including the secondary network, loads, and DER components must be developed and validated for system planning and operation and to examine the distribution system performance. In this work, a detailed model of an actual feeder with high penetration of DERs from an electrical utility in Arizona is developed. For the primary circuit, distribution transformers, and cables are modeled. For the secondary circuit, actual conductors to each house, as well as loads and photovoltaic (PV) units at each premise are represented. An automated tool for secondary network topology construction for load feeder topology assignation is developed. The automated tool provides a more accurate feeder topology for power flow calculation purposes. The input data for this tool consists of parcel geographic information system (GIS) delimitation data, and utility secondary feeder topology database. Additionally, a highly automated, novel method to enhance the accuracy of utility distribution feeder models to capture their performance by matching simulation results with corresponding field measurements is presented. The method proposed uses advanced metering infrastructure (AMI) voltage and derived active power measurements at the customer level, data acquisition systems (DAS) measurements at the feeder-head, in conjunction with an AC optimal power flow (ACOPF) to estimate customer active and reactive power consumption over a time horizon, while accounting for unmetered loads. The method proposed estimates both voltage magnitude and angle for each phase at the unbalanced distribution substation. The accuracy of the method developed by comparing the time-series power flow results obtained from the enhancement algorithm with OpenDSS results and with the field measurements available. The proposed approach seamlessly manages the data available from the optimization procedure through the final model verification.
ContributorsMontano-Martinez, Karen Vanessa (Author) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Weng, Yang (Committee member) / Pal, Anamitra (Committee member) / Arizona State University (Publisher)
Created2022
158193-Thumbnail Image.png
Description
Energy is one of the wheels on which the modern world runs. Therefore, standards and limits have been devised to maintain the stability and reliability of the power grid. This research shows a simple methodology for increasing the amount of Inverter-based Renewable Generation (IRG), which is also known as Inverter-based

Energy is one of the wheels on which the modern world runs. Therefore, standards and limits have been devised to maintain the stability and reliability of the power grid. This research shows a simple methodology for increasing the amount of Inverter-based Renewable Generation (IRG), which is also known as Inverter-based Resources (IBR), for that considers the voltage and frequency limits specified by the Western Electricity Coordinating Council (WECC) Transmission Planning (TPL) criteria, and the tie line power flow limits between the area-under-study and its neighbors under contingency conditions. A WECC power flow and dynamic file is analyzed and modified in this research to demonstrate the performance of the methodology. GE's Positive Sequence Load Flow (PSLF) software is used to conduct this research and Python was used to analyze the output data.

The thesis explains in detail how the system with 11% of IRG operated before conducting any adjustments (addition of IRG) and what procedures were modified to make the system run correctly. The adjustments made to the dynamic models are also explained in depth to give a clearer picture of how each adjustment affects the system performance. A list of proposed IRG units along with their locations were provided by SRP, a power utility in Arizona, which were to be integrated into the power flow and dynamic files. In the process of finding the maximum IRG penetration threshold, three sensitivities were also considered, namely, momentary cessation due to low voltages, transmission vs. distribution connected solar generation, and stalling of induction motors. Finally, the thesis discusses how the system reacts to the aforementioned modifications, and how IRG penetration threshold gets adjusted with regards to the different sensitivities applied to the system.
ContributorsAlbhrani, Hashem A M H S (Author) / Pal, Anamitra (Thesis advisor) / Holbert, Keith E. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2020