Matching Items (11)
Filtering by

Clear all filters

135656-Thumbnail Image.png
Description
Based on theoretical calculations, a material that is highly transmissive below 3000 nm and opaque above 3000 nm is desired to replace glass covers for flat plate solar thermal systems. Additionally, a suitable replacement material needs to have a sufficiently high operating temperature in order to prevent the glazing from

Based on theoretical calculations, a material that is highly transmissive below 3000 nm and opaque above 3000 nm is desired to replace glass covers for flat plate solar thermal systems. Additionally, a suitable replacement material needs to have a sufficiently high operating temperature in order to prevent the glazing from melting and warping in a solar system. Traditional solar thermal applications use conventional soda lime glass or low iron content glass to accomplish this; however, this project aims to investigate acrylic, polycarbonate, and FEP film as suitable alternatives for conventional solar glazings. While UV-Vis and FT-IR spectroscopy indicate that these polymer substitutes may not be ideal when used alone, when used in combination with coatings and additives, these materials may present an opportunity for a glazing replacement. A model representing a flat plate solar collector was developed to qualitatively analyze the various materials and their performance. Using gathered spectroscopy data, the model was developed for a multi-glazing system and it was found that polymer substitutes could perform better in certain system configurations. To complete the model, the model must be verified using empirical data and coatings and additives investigated for the purposes of achieving the desired materials optical specifications.
ContributorsBessant, Justin Zachary (Author) / Friesen, Cody (Thesis director) / Lorzel, Heath (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136674-Thumbnail Image.png
Description
As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable.

As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable. Biological systems, on the other hand, are innately efficient both in terms of time and energy by handling tasks at the molecular level. Utilizing this efficiency is at the core of this research. Proper manipulation of even common proteins can render complexes functionalized for specific tasks. In this case, the coupling of a rhenium-based organometallic ligand to a modified myoglobin containing a zinc porphyrin, allow for efficient reduction of carbon dioxide, resulting in energy that can be harnessed and byproducts which can be used for further processing. Additionally, a rhenium based ligand functionalized via biotin is tested in conjunction with streptavidin and ruthenium-bipyridine.
ContributorsAllen, Jason Kenneth (Author) / Ghirlanda, Giovanna (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-12
133693-Thumbnail Image.png
Description
Fresh water is essential to the human population and is an integral component in global economics for its multiple uses, and population growth/development cause concern for the possible exhaustion of the limited supply of freshwater. A combined computational and experimental approach to observe and evaluate pervaporation membrane performance for brackish

Fresh water is essential to the human population and is an integral component in global economics for its multiple uses, and population growth/development cause concern for the possible exhaustion of the limited supply of freshwater. A combined computational and experimental approach to observe and evaluate pervaporation membrane performance for brackish water recovery was done to assess its efficiency and practicality for real world application. Results from modeling conveyed accuracy to reported parameter values from literature as well as strong dependence of performance on input parameters such as temperature. Experimentation results showed improved performance in flux by 34%-42% with radiative effect and then additional performance improvement (9%-33%) with the photothermal effect from carbon black application. Future work will include improvements to the model to include scaling propensity and energy consumption as well as continued experimentation to assess quality of pervaporation in water recovery.
ContributorsDurbin, Mitchell (Co-author) / Rivers, Frederick (Co-author) / Lind Thomas, MaryLaura (Thesis director) / Durgan, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons and excite electrons to create current. Sun Stop Solar plans

Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons and excite electrons to create current. Sun Stop Solar plans to initially begin by developing the foundational technological patent for our perovskite-based single-junction solar cells. Sun Stop Solar plans to initially begin by first having a patent set up, then licensing our patent to a manufacturer, and slowly building towards manufacturing our own solar modules.

ContributorsMatyushov, Ivan (Author) / Aboudi, Joseph (Co-author) / Hofer, David (Co-author) / Byrne, Jared (Thesis director) / Lawson, Brennan (Committee member) / Cartwright, Bryce (Committee member) / Adarsh, Siddharth (Committee member) / Higashino, Katsuko (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2023-05
Description

Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons and excite electrons to create current. Sun Stop Solar will

Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons and excite electrons to create current. Sun Stop Solar will focus on first developing the patent, licensing the technology to a manufacturer, and slowly garnering funds to launch our own manufacturing eventually. Sun Stop Solar is offering a domestic, affordable, and sustainable solution for the current solar market.

ContributorsAboudi, Joseph (Author) / Hofer, David (Co-author) / Matyushov, Ivan (Co-author) / Byrne, Jared (Thesis director) / Higashino, Katsuko (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor)
Created2023-05
Description
Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons and excite electrons to create current. Sun Stop Solar will

Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons and excite electrons to create current. Sun Stop Solar will focus on first developing the patent, licensing the technology to a manufacturer, and slowly garnering funds to launch our own manufacturing eventually. Sun Stop Solar is offering a domestic, affordable, and sustainable solution for the current solar market.
ContributorsAboudi, Joseph (Author) / Hofer, David (Co-author) / Matyushov, Ivan (Co-author) / Byrne, Jared (Thesis director) / Higashino, Katsuko (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor)
Created2023-05
Description
Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons and excite electrons to create current. Sun Stop Solar will

Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons and excite electrons to create current. Sun Stop Solar will focus on first developing the patent, licensing the technology to a manufacturer, and slowly garnering funds to launch our own manufacturing eventually. Sun Stop Solar is offering a domestic, affordable, and sustainable solution for the current solar market.
ContributorsAboudi, Joseph (Author) / Hofer, David (Co-author) / Matyushov, Ivan (Co-author) / Byrne, Jared (Thesis director) / Higashino, Katsuko (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor)
Created2023-05
Description

Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons and excite electrons to create current. Sun Stop Solar will

Sun Stop Solar, is a solar module development and manufacturing company that utilizes a unique class of materials, perovskites, as the solar cells’ absorption layer. Perovskites are a unique class of compounds with some perovskites being able to absorb photons and excite electrons to create current. Sun Stop Solar will focus on first developing the patent, licensing the technology to a manufacturer, and slowly garnering funds to launch our own manufacturing eventually. Sun Stop Solar is offering a domestic, affordable, and sustainable solution for the current solar market.

ContributorsHofer, David (Author) / Matyushov, Ivan (Co-author) / Aboudi, Joseph (Co-author) / Byrne, Jared (Thesis director) / Lawson, Brennan (Committee member) / Higashino, Katsuko (Committee member) / Barrett, The Honors College (Contributor) / Department of Supply Chain Management (Contributor) / Department of Economics (Contributor)
Created2023-05
132175-Thumbnail Image.png
Description
The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the

The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the energy output from solar. One such recently researched wide band gap absorber is ZnSnN2. ZnSnN2 proves too difficult to form under most conditions, but has the necessary band gap to make it a potential earth abundant solar absorber. The deposition process for ZnSnN2 is usually conducted with Zn and Sn metal targets while flowing N2 gas. Due to restrictions with chamber depositions, instead ZnO and SnO2 targets were sputtered with N2 gas to attempt to form separate zinc and tin oxynitrides as an initial single target study prior to future combinatorial studies. The electrical and optical properties and crystal structure of these thin films were analyzed to determine the nitrogen incorporation in the thin films through X-ray diffraction, UV-Vis spectrophotometry, and 4-point probe measurements. The SnO2 thin films showed a clear response in the absorption coefficient leading but showed no observable XRD peak shift. Thus, it is unlikely that substantial amounts of nitrogen were incorporated into SnO¬2. ZnO showed a clear response increase in conductivity with N2 with an additional shift in the XRD peak at 300 °C and potential secondary phase peak. Nitrogen incorporation was achieved with fair amounts of certainty for the ZnO thin films.
ContributorsTheut, Nicholas C (Author) / Bertoni, Mariana (Thesis director) / Holman, Zachary (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05