Matching Items (14)
Filtering by

Clear all filters

134312-Thumbnail Image.png
Description
The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission.

The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission. The only power source during the mission will be its solar panels. It is difficult to calculate power generation from solar panels by hand because of the different orientations the satellite will be positioned in during orbit; therefore, simulation will be used to produce power generation data. Knowing how much power is generated is integral to balancing the power budget, confirming whether there is enough power for all the components, and knowing whether there will be enough power in the batteries during eclipse. This data will be used to create an optimal design for the Phoenix CubeSat to accomplish its mission.
ContributorsBarakat, Raymond John (Author) / White, Daniel (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
137496-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and the extended section on the economics for the Honors Thesis.

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and the extended section on the economics for the Honors Thesis. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C. The economic calculations show the expected energy cost savings for Arizona residents.
ContributorsHaines, Brent Robert (Author) / Roedel, Ronald (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
137463-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C.
ContributorsDenke, Steven Michael (Author) / Roedel, Ron (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
137020-Thumbnail Image.png
Description
In many systems, it is difficult or impossible to measure the phase of a signal. Direct recovery from magnitude is an ill-posed problem. Nevertheless, with a sufficiently large set of magnitude measurements, it is often possible to reconstruct the original signal using algorithms that implicitly impose regularization conditions on this

In many systems, it is difficult or impossible to measure the phase of a signal. Direct recovery from magnitude is an ill-posed problem. Nevertheless, with a sufficiently large set of magnitude measurements, it is often possible to reconstruct the original signal using algorithms that implicitly impose regularization conditions on this ill-posed problem. Two such algorithms were examined: alternating projections, utilizing iterative Fourier transforms with manipulations performed in each domain on every iteration, and phase lifting, converting the problem to that of trace minimization, allowing for the use of convex optimization algorithms to perform the signal recovery. These recovery algorithms were compared on a basis of robustness as a function of signal-to-noise ratio. A second problem examined was that of unimodular polyphase radar waveform design. Under a finite signal energy constraint, the maximal energy return of a scene operator is obtained by transmitting the eigenvector of the scene Gramian associated with the largest eigenvalue. It is shown that if instead the problem is considered under a power constraint, a unimodular signal can be constructed starting from such an eigenvector that will have a greater return.
ContributorsJones, Scott Robert (Author) / Cochran, Douglas (Thesis director) / Diaz, Rodolfo (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
137081-Thumbnail Image.png
Description
Passive radar can be used to reduce the demand for radio frequency spectrum bandwidth. This paper will explain how a MATLAB simulation tool was developed to analyze the feasibility of using passive radar with digitally modulated communication signals. The first stage of the simulation creates a binary phase-shift keying (BPSK)

Passive radar can be used to reduce the demand for radio frequency spectrum bandwidth. This paper will explain how a MATLAB simulation tool was developed to analyze the feasibility of using passive radar with digitally modulated communication signals. The first stage of the simulation creates a binary phase-shift keying (BPSK) signal, quadrature phase-shift keying (QPSK) signal, or digital terrestrial television (DTTV) signal. A scenario is then created using user defined parameters that simulates reception of the original signal on two different channels, a reference channel and a surveillance channel. The signal on the surveillance channel is delayed and Doppler shifted according to a point target scattering profile. An ambiguity function detector is implemented to identify the time delays and Doppler shifts associated with reflections off of the targets created. The results of an example are included in this report to demonstrate the simulation capabilities.
ContributorsScarborough, Gillian Donnelly (Author) / Cochran, Douglas (Thesis director) / Berisha, Visar (Committee member) / Wang, Chao (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
133232-Thumbnail Image.png
Description
Growing up in Ghana West Africa, I realized there were a few major obstacles hindering the education of the youth. One of them was the consistent supply of all year-round power. Therefore, pursuing a career in power electronics, I decided to research and implement a budget-friendly DC-AC converter that can

Growing up in Ghana West Africa, I realized there were a few major obstacles hindering the education of the youth. One of them was the consistent supply of all year-round power. Therefore, pursuing a career in power electronics, I decided to research and implement a budget-friendly DC-AC converter that can take power from a DC source such as a solar panel to make AC power, suitable for grid-implementation. This project was undertaken with two other colleagues (Ian Vogt and Brett Fennelly), as our Senior Design Capstone project. My colleagues primarily researched into the "advanced" part of the converter such as Volt-VAR, Maximum Power Point Tracking (MPPT), and variable power factor, making the Capstone project be dubbed as "Smart Inverter". In this paper, I elaborate on the entire process of my research and simulation, through the design and layout of the PCB board to milling, soldering and testing. That was my contribution to the capstone project. After testing the board, it was concluded that although the inverter was intended to be the very inexpensive, some electrical and design principles could not be compromised. The converter did successfully invert DC power to AC, but it was only at low voltage levels; it could not withstand the higher voltages. This roadblock stymied the testing of advanced functionalities, paving way for an avenue of further research and implementation.
ContributorsAsigbekye, John (Author) / Ayyanar, Raja (Thesis director) / Sedillo, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137646-Thumbnail Image.png
Description
The project described here is a solar powered intrusion detection system consisting of three modules: a battery recharging circuit, a laser emitter and photodetector pair, and a Wi- Fi connectivity board. Over the preceding seven months, great care has been taken for the design and construction of this system. The

The project described here is a solar powered intrusion detection system consisting of three modules: a battery recharging circuit, a laser emitter and photodetector pair, and a Wi- Fi connectivity board. Over the preceding seven months, great care has been taken for the design and construction of this system. The first three months were spent researching and selecting suitable IC's and external components (e.g. solar panel, batteries, etc.). Then, the next couple of months were spent ordering specific materials and equipment for the construction of our prototype. Finally, the last two months were used to build a working prototype, with a substantial amount of time used for perfecting our system's packaging and operation. This report will consist of a detailed discussion of our team's research, design activities, prototype implementation, final budget, and final schedule. Technical discussion of the concepts behind our design will assist with understanding the design activities and prototype implementation sections that will follow. Due to the generous funding of the group from the Barrett Honors College, our overall budget available for the project was $1600. Of that amount, only $334.51 was spent on the actual system components, with $829.42 being spent on the equipment and materials needed for the testing and construction of the prototype. As far as the schedule goes, we are essentially done with the project. The only tasks left to finish are a successful defense of the project at the oral presentation on Friday, 29 March 2013, followed by a successful demo on 26 April 2013.
ContributorsTroyer, Nicole L. (Co-author) / Shtayer, Idan (Co-author) / Guise, Chris (Co-author) / Kozicki, Michael (Thesis director) / Roedel, Ronald (Committee member) / Goodnick, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
135917-Thumbnail Image.png
Description
Wire connected solar cells are a promising new technology that can increase the efficiency and reduce the cost of solar modules. The use of wire rather than ribbon bus bars can lead to reduced shading, better light trapping, and reduced material costs, all while eliminating the need for soldering. This

Wire connected solar cells are a promising new technology that can increase the efficiency and reduce the cost of solar modules. The use of wire rather than ribbon bus bars can lead to reduced shading, better light trapping, and reduced material costs, all while eliminating the need for soldering. This research first analyzes the optimal wire gauge to reduce cracking and improve efficiency. Wire sizes between 20 AWG and 28 AWG were tested, with the optimal size being between 24 AWG and 26 AWG for the ethylene vinyl acetate (EVA) layer used in the module. A polyethylene sheet was then added between the wires and EVA layer to prevent the EVA from running underneath the wires during lamination, ultimately allowing for a more uniform contact and only a slight reduction in quantum efficiency. Then, a comparison between tinned copper wires and indium coated copper wires is shown. A mini-module efficiency of 20.0% has been achieved using tinned copper wires, while indium coated copper wires have produced a mini-module efficiency of 21.2%. Thus, tinned copper wires can be a viable alternative to indium coated copper wires, depending on the needs of the customers and the current price of indium. The module design throughout the research utilizes a planar assembly method, which improves the ease of manufacturing for wire interconnection technology. A two-cell base component is constructed and shown, with the intended future application of making large wire connected modules. Finally, wire applications in both single-cell and four-cell flexible modules are explored, with an efficiency of 18.65% achieved on a single-cell, flexible, heterojunction solar module using wire interconnections. A fully flexible four-cell string is developed, and future recommendations for related research are included.
ContributorsTyler, Kevin Daniel (Author) / Bowden, Stuart (Thesis director) / Herasimenka, Stanislau (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
147972-Thumbnail Image.png
Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

ContributorsHirte, Amanda (Author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

We present in this paper a method to compare scene classification accuracy of C-band Synthetic aperture radar (SAR) and optical images utilizing both classical and quantum computing algorithms. This REU study uses data from the Sentinel satellite. The dataset contains (i) synthetic aperture radar images collected from the Sentinel-1 satellite

We present in this paper a method to compare scene classification accuracy of C-band Synthetic aperture radar (SAR) and optical images utilizing both classical and quantum computing algorithms. This REU study uses data from the Sentinel satellite. The dataset contains (i) synthetic aperture radar images collected from the Sentinel-1 satellite and (ii) optical images for the same area as the SAR images collected from the Sentinel-2 satellite. We utilize classical neural networks to classify four classes of images. We then use Quantum Convolutional Neural Networks and deep learning techniques to take advantage of machine learning to help the system train, learn, and identify at a higher classification accuracy. A hybrid Quantum-classical model that is trained on the Sentinel1-2 dataset is proposed, and the performance is then compared against the classical in terms of classification accuracy.

ContributorsMiller, Leslie (Author) / Spanias, Andreas (Thesis director) / Uehara, Glen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05