Matching Items (10)
Filtering by

Clear all filters

131516-Thumbnail Image.png
Description
The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then measuring microbial inactivation. Gray water was made through taking autoclaved nanopure water, and increasing the concentration of surfacants, the turbidity,

The impact of physical/chemical properties of gray water on microbial inactivation in gray water using chlorine was investigated through creating artificial gray water in lab, varying specific components, and then measuring microbial inactivation. Gray water was made through taking autoclaved nanopure water, and increasing the concentration of surfacants, the turbidity, the concentration of organic content, and spiking E. coli grown in tryptic soy broth (TSB); chlorine was introduced using Clorox Disinfecting Bleach2. Bacteria was detected using tryptic soy agar (TSA), and E. coli was specifically detected using the selective media, brilliance. The log inactivation of bacteria detected using TSA was shown to be inversely related to the turbidity of the solution. Complete inactivation of E. coli concentrations between 104-105 CFU/100 ml in gray water with turbidities between 10-100 NTU, 0.1-0.5 mg/L of humic acid, and 0.1 ml of Dawn Ultra, was shown to occur, as detected by brilliance, at chlorine concentrations of 1-2 mg/L within 30 seconds. These result in concentration time (CT) values between 0.5-1 mg/L·min. Under the same gray water conditions, and an E. coli concentration of 104 CFU/100 ml and a chlorine concentration of 0.01 mg/L, complete inactivation was shown to occur in all trials within two minutes. These result in CT values ranging from 0.005 to 0.02. The turbidity and humic acid concentration were shown to be inversely related to the log inactivation and directly related to the CT value. This study shows that chlorination is a valid method of treatment of gray water for certain irrigation reuses.
ContributorsGreenberg, Samuel Gabe (Author) / Abbaszadegan, Morteza (Thesis director) / Schoepf, Jared (Committee member) / Alum, Absar (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
135656-Thumbnail Image.png
Description
Based on theoretical calculations, a material that is highly transmissive below 3000 nm and opaque above 3000 nm is desired to replace glass covers for flat plate solar thermal systems. Additionally, a suitable replacement material needs to have a sufficiently high operating temperature in order to prevent the glazing from

Based on theoretical calculations, a material that is highly transmissive below 3000 nm and opaque above 3000 nm is desired to replace glass covers for flat plate solar thermal systems. Additionally, a suitable replacement material needs to have a sufficiently high operating temperature in order to prevent the glazing from melting and warping in a solar system. Traditional solar thermal applications use conventional soda lime glass or low iron content glass to accomplish this; however, this project aims to investigate acrylic, polycarbonate, and FEP film as suitable alternatives for conventional solar glazings. While UV-Vis and FT-IR spectroscopy indicate that these polymer substitutes may not be ideal when used alone, when used in combination with coatings and additives, these materials may present an opportunity for a glazing replacement. A model representing a flat plate solar collector was developed to qualitatively analyze the various materials and their performance. Using gathered spectroscopy data, the model was developed for a multi-glazing system and it was found that polymer substitutes could perform better in certain system configurations. To complete the model, the model must be verified using empirical data and coatings and additives investigated for the purposes of achieving the desired materials optical specifications.
ContributorsBessant, Justin Zachary (Author) / Friesen, Cody (Thesis director) / Lorzel, Heath (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136674-Thumbnail Image.png
Description
As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable.

As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable. Biological systems, on the other hand, are innately efficient both in terms of time and energy by handling tasks at the molecular level. Utilizing this efficiency is at the core of this research. Proper manipulation of even common proteins can render complexes functionalized for specific tasks. In this case, the coupling of a rhenium-based organometallic ligand to a modified myoglobin containing a zinc porphyrin, allow for efficient reduction of carbon dioxide, resulting in energy that can be harnessed and byproducts which can be used for further processing. Additionally, a rhenium based ligand functionalized via biotin is tested in conjunction with streptavidin and ruthenium-bipyridine.
ContributorsAllen, Jason Kenneth (Author) / Ghirlanda, Giovanna (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-12
136388-Thumbnail Image.png
Description
In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol.

In our modern world the source of for many chemicals is to acquire and refine oil. This process is becoming an expensive to the environment and to human health. Alternative processes for acquiring the final product have been developed but still need work. One product that is valuable is butanol. The normal process for butanol production is very intensive but there is a method to produce butanol from bacteria. This process is better because it is more environmentally safe than using oil. One problem however is that when the bacteria produce too much butanol it reaches the toxicity limit and stops the production of butanol. In order to keep butanol from reaching the toxicity limit an adsorbent is used to remove the butanol without harming the bacteria. The adsorbent is a mesoporous carbon powder that allows the butanol to be adsorbed on it. This thesis explores different designs for a magnetic separation process to extract the carbon powder from the culture.
ContributorsChabra, Rohin (Author) / Nielsen, David (Thesis director) / Torres, Cesar (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136987-Thumbnail Image.png
Description
In this research, construction of a model membrane system using Polyvinylidene Chloride-Co Acrylonitrile and Linde Type A zeolites is described. The systems aims to separate out flow through zeolite pores and flow through interfaces between zeolites and polymers through the use of pore filled and pore open zeolites. Permeation tests

In this research, construction of a model membrane system using Polyvinylidene Chloride-Co Acrylonitrile and Linde Type A zeolites is described. The systems aims to separate out flow through zeolite pores and flow through interfaces between zeolites and polymers through the use of pore filled and pore open zeolites. Permeation tests and salt rejection tests were performed, and the data analyzed to yield approximation of separated flow through zeolites and interfaces. This work concludes the more work is required to bring the model system into a functioning state. New polymer selections and new techniques to produce the membrane system are described for future work.
ContributorsShabilla, Andrew Daniel (Author) / Lind, Mary Laura (Thesis director) / Lin, Jerry (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
137117-Thumbnail Image.png
Description
This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student

This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student interest or enjoyment.5 To discover the effectiveness of demonstrations in these concerns, an in classroom demonstration with a water filtration experiment was accompanied by several modules and followed by a short survey. Hypotheses tested included that students would enjoy the demonstration more than a typical class session, and that of these students, those with more visual or tactile learning styles would identify with science or engineering as a possible major in college. The survey results affirmed the first hypothesis, but disproved the second hypothesis; thus illustrating that demonstrations are enjoyable, and beneficial for sparking or maintaining student interest in science across all types of students.
ContributorsPiper, Jessica Marie (Author) / Lind, Mary Laura (Thesis director) / Montoya-Gonzales, Roxanna (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
133693-Thumbnail Image.png
Description
Fresh water is essential to the human population and is an integral component in global economics for its multiple uses, and population growth/development cause concern for the possible exhaustion of the limited supply of freshwater. A combined computational and experimental approach to observe and evaluate pervaporation membrane performance for brackish

Fresh water is essential to the human population and is an integral component in global economics for its multiple uses, and population growth/development cause concern for the possible exhaustion of the limited supply of freshwater. A combined computational and experimental approach to observe and evaluate pervaporation membrane performance for brackish water recovery was done to assess its efficiency and practicality for real world application. Results from modeling conveyed accuracy to reported parameter values from literature as well as strong dependence of performance on input parameters such as temperature. Experimentation results showed improved performance in flux by 34%-42% with radiative effect and then additional performance improvement (9%-33%) with the photothermal effect from carbon black application. Future work will include improvements to the model to include scaling propensity and energy consumption as well as continued experimentation to assess quality of pervaporation in water recovery.
ContributorsDurbin, Mitchell (Co-author) / Rivers, Frederick (Co-author) / Lind Thomas, MaryLaura (Thesis director) / Durgan, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
165546-Thumbnail Image.png
Description

The outlying cities of Phoenix's West Metropolitan experienced rapid growth in the past ten years. This trend is only going to continue with an average expected growth of 449-891% between 2000 and 2035 (ADOT, 2012). Phoenix is not new to growth and has consistently seen swaths of people added to

The outlying cities of Phoenix's West Metropolitan experienced rapid growth in the past ten years. This trend is only going to continue with an average expected growth of 449-891% between 2000 and 2035 (ADOT, 2012). Phoenix is not new to growth and has consistently seen swaths of people added to its population. This raises the question of what happened to the people who lived in Phoenix's West Valley during this period of rapid change and growth in their communities? What are their stories and what do their stories reveal about the broader public history of change in Phoenix's West Valley? In consideration of these questions, the community oral histories of eight residents from the West Valley were collected to add historical nuance to the limited archival records available in the area. From this collection, the previous notion of "post-war boomtowns” describing Phoenix’s West Valley was revealed to be highly inaccurate and dismissive of the residents' experiences who lived and formed their lives there.

ContributorsGeiser, Samantha (Author) / Campanile, Isabella (Co-author) / Martinez Orozco, Rafael (Thesis director) / O'Flaherty, Katherine (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
132175-Thumbnail Image.png
Description
The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the

The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the energy output from solar. One such recently researched wide band gap absorber is ZnSnN2. ZnSnN2 proves too difficult to form under most conditions, but has the necessary band gap to make it a potential earth abundant solar absorber. The deposition process for ZnSnN2 is usually conducted with Zn and Sn metal targets while flowing N2 gas. Due to restrictions with chamber depositions, instead ZnO and SnO2 targets were sputtered with N2 gas to attempt to form separate zinc and tin oxynitrides as an initial single target study prior to future combinatorial studies. The electrical and optical properties and crystal structure of these thin films were analyzed to determine the nitrogen incorporation in the thin films through X-ray diffraction, UV-Vis spectrophotometry, and 4-point probe measurements. The SnO2 thin films showed a clear response in the absorption coefficient leading but showed no observable XRD peak shift. Thus, it is unlikely that substantial amounts of nitrogen were incorporated into SnO¬2. ZnO showed a clear response increase in conductivity with N2 with an additional shift in the XRD peak at 300 °C and potential secondary phase peak. Nitrogen incorporation was achieved with fair amounts of certainty for the ZnO thin films.
ContributorsTheut, Nicholas C (Author) / Bertoni, Mariana (Thesis director) / Holman, Zachary (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130865-Thumbnail Image.png
Description

The goal of this research was to identify why the federal government should invest in solar research and development, and which areas of solar improvement should be focused on. Motivation for this can be found in the pressing need to prevent and reverse the effects of climate change, the inevitability

The goal of this research was to identify why the federal government should invest in solar research and development, and which areas of solar improvement should be focused on. Motivation for this can be found in the pressing need to prevent and reverse the effects of climate change, the inevitability of fossil fuel resources eventually running out, and the economic and job creation potential which solar energy holds. Additionally, it is important to note that the best course of action will involve a split of funding between current solar rollout and energy grid updating, and the R&D listed in this research. Upon examination, it can be seen that an energy revolution, led by a federal solar jobs program and a Green New Deal, would be both an ethically and economically beneficial solution. A transition from existing fossil fuel infrastructure to renewable, solar-powered infrastructure would not only be possible but highly beneficial in many aspects, including massive job creation, a more affordable, renewable energy solution to replace coal-fired plants, and no fuel spending or negotiation required.<br/>When examining which areas of solar improvement to focus on for R&D funding, four primary areas were identified, with solutions presented for each. These areas for improvement are EM capture, EM conversion efficiency, energy storage capacity, and the prevention of overheating. For each of these areas of improvement, affordable solutions that would greatly improve the efficiency and viability of solar as a primary energy source were identified. The most notable area that should be examined is solar storage, which would allow solar PV panels to overcome their greatest real and perceived obstacle, which is the inconsistent power generation. Solar storage is easily attainable, and with enough storage capacity, excess solar energy which would otherwise be wasted during the day can be stored and used during the night or cloudy weather as necessary. Furthermore, the implementation of highly innovative solutions, such as agrivoltaics, would allow for a solar revolution to occur.

ContributorsWhitlow, Hunter Marshall (Author) / Fong, Benjamin (Thesis director) / Andino, Jean (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05