Matching Items (17)
Filtering by

Clear all filters

150289-Thumbnail Image.png
Description
A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual

A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual technologies and thereby providing substantial scope for further improvements in efficiency. The thesis explores photovoltaic devices using new physical processes that rely on thin layers and are capable of attaining the thermodynamic limit of photovoltaic technology. Silicon heterostructure is one of the candidate technologies in which thin films induce a minority carrier collecting junction in silicon and the devices can achieve efficiency close to the thermodynamic limits of silicon technology. The thesis proposes and experimentally establishes a new theory explaining the operation of silicon heterostructure solar cells. The theory will assist in identifying the optimum properties of thin film materials for silicon heterostructure and help in design and characterization of the devices, along with aiding in developing new devices based on this technology. The efficiency potential of silicon heterostructure is constrained by the thermodynamic limit (31%) of single junction solar cell and is considerably lower than the limit of photovoltaic conversion (~ 80 %). A further improvement in photovoltaic conversion efficiency is possible by implementing a multiple quasi-fermi level system (MQFL). A MQFL allows the absorption of sub band gap photons with current being extracted at a higher band-gap, thereby allowing to overcome the efficiency limit of single junction devices. A MQFL can be realized either by thin epitaxial layers of alternating higher and lower band gap material with nearly lattice matched (quantum well) or highly lattice mismatched (quantum dot) structure. The thesis identifies the material combination for quantum well structure and calculates the absorption coefficient of a MQFl based on quantum well. GaAsSb (barrier)/InAs(dot) was identified as a candidate material for MQFL using quantum dot. The thesis explains the growth mechanism of GaAsSb and the optimization of GaAsSb and GaAs heterointerface.
ContributorsGhosha, Kuṇāla (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
137646-Thumbnail Image.png
Description
The project described here is a solar powered intrusion detection system consisting of three modules: a battery recharging circuit, a laser emitter and photodetector pair, and a Wi- Fi connectivity board. Over the preceding seven months, great care has been taken for the design and construction of this system. The

The project described here is a solar powered intrusion detection system consisting of three modules: a battery recharging circuit, a laser emitter and photodetector pair, and a Wi- Fi connectivity board. Over the preceding seven months, great care has been taken for the design and construction of this system. The first three months were spent researching and selecting suitable IC's and external components (e.g. solar panel, batteries, etc.). Then, the next couple of months were spent ordering specific materials and equipment for the construction of our prototype. Finally, the last two months were used to build a working prototype, with a substantial amount of time used for perfecting our system's packaging and operation. This report will consist of a detailed discussion of our team's research, design activities, prototype implementation, final budget, and final schedule. Technical discussion of the concepts behind our design will assist with understanding the design activities and prototype implementation sections that will follow. Due to the generous funding of the group from the Barrett Honors College, our overall budget available for the project was $1600. Of that amount, only $334.51 was spent on the actual system components, with $829.42 being spent on the equipment and materials needed for the testing and construction of the prototype. As far as the schedule goes, we are essentially done with the project. The only tasks left to finish are a successful defense of the project at the oral presentation on Friday, 29 March 2013, followed by a successful demo on 26 April 2013.
ContributorsTroyer, Nicole L. (Co-author) / Shtayer, Idan (Co-author) / Guise, Chris (Co-author) / Kozicki, Michael (Thesis director) / Roedel, Ronald (Committee member) / Goodnick, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
137496-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and the extended section on the economics for the Honors Thesis.

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and the extended section on the economics for the Honors Thesis. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C. The economic calculations show the expected energy cost savings for Arizona residents.
ContributorsHaines, Brent Robert (Author) / Roedel, Ronald (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
137463-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C.
ContributorsDenke, Steven Michael (Author) / Roedel, Ron (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
132279-Thumbnail Image.png
Description
Energy poverty is the lack of access to the basic energy resources needed for human development. Fossil fuels, through their heavy emissions and transience, are slowly but surely leaving room for change in the energy sector as renewable energy sources rise to the challenge of sustainable, clean, and cost-efficient energy

Energy poverty is the lack of access to the basic energy resources needed for human development. Fossil fuels, through their heavy emissions and transience, are slowly but surely leaving room for change in the energy sector as renewable energy sources rise to the challenge of sustainable, clean, and cost-efficient energy production. Because it is mostly located in rural areas, solutions crafted against energy poverty need to be appropriate for those areas and their development objectives. As top contenders, photovoltaics insertion in the energy market has largely soared creating, therefore, a need for its distributed energy resources to interconnect appropriately to the area electrical power system. EEE Senior Design Team 11 saw in this the need to design an advanced photovoltaic inverter with those desired grid functions but also leveraging the technological superiority of wide bandgap devices over silicon semiconductors. The honors creative project is an integral part of the senior design capstone project for Team 11. It has a two-front approach, first exploring the IEEE 1547-2018 standard on distributed energy resources; then focusing on the author’s personal contribution to the aforementioned senior design project: digital signal processing and grid support implementation. This report serves as an accompanying write up to the creative project.
ContributorsTall, Ndeye Maty (Author) / Ayyanar, Raja (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133232-Thumbnail Image.png
Description
Growing up in Ghana West Africa, I realized there were a few major obstacles hindering the education of the youth. One of them was the consistent supply of all year-round power. Therefore, pursuing a career in power electronics, I decided to research and implement a budget-friendly DC-AC converter that can

Growing up in Ghana West Africa, I realized there were a few major obstacles hindering the education of the youth. One of them was the consistent supply of all year-round power. Therefore, pursuing a career in power electronics, I decided to research and implement a budget-friendly DC-AC converter that can take power from a DC source such as a solar panel to make AC power, suitable for grid-implementation. This project was undertaken with two other colleagues (Ian Vogt and Brett Fennelly), as our Senior Design Capstone project. My colleagues primarily researched into the "advanced" part of the converter such as Volt-VAR, Maximum Power Point Tracking (MPPT), and variable power factor, making the Capstone project be dubbed as "Smart Inverter". In this paper, I elaborate on the entire process of my research and simulation, through the design and layout of the PCB board to milling, soldering and testing. That was my contribution to the capstone project. After testing the board, it was concluded that although the inverter was intended to be the very inexpensive, some electrical and design principles could not be compromised. The converter did successfully invert DC power to AC, but it was only at low voltage levels; it could not withstand the higher voltages. This roadblock stymied the testing of advanced functionalities, paving way for an avenue of further research and implementation.
ContributorsAsigbekye, John (Author) / Ayyanar, Raja (Thesis director) / Sedillo, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of

This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of development. In addition, the general public is unaware of how solar energy works, how it is made, and how it stands economically. This series of lectures answering those three questions.
ContributorsLeBeau, Edward Sanroma (Author) / Goryll, Michael (Thesis director) / Bowden, Stuart (Committee member) / Dauksher, Bill (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134312-Thumbnail Image.png
Description
The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission.

The Phoenix CubeSat is a 3U Earth imaging CubeSat which will take infrared (IR) photos of cities in the United Stated to study the Urban Heat Island Effect, (UHI) from low earth orbit (LEO). It has many different components that need to be powered during the life of its mission. The only power source during the mission will be its solar panels. It is difficult to calculate power generation from solar panels by hand because of the different orientations the satellite will be positioned in during orbit; therefore, simulation will be used to produce power generation data. Knowing how much power is generated is integral to balancing the power budget, confirming whether there is enough power for all the components, and knowing whether there will be enough power in the batteries during eclipse. This data will be used to create an optimal design for the Phoenix CubeSat to accomplish its mission.
ContributorsBarakat, Raymond John (Author) / White, Daniel (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of

This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of development. In addition, the general public is unaware of how solar energy works, how it is made, and how it stands economically. This series of lectures answering those three questions. After two years doing photovoltaic research, and an undergraduate degree in Electrical Engineering, enough expertise has been acquired present on at a late high-school to early college level. Education is key to improving the popularity of using solar energy and the popularity of investing in photovoltaic research. Solar energy is a viable option to satisfy our energy crisis because the materials it requires can quickly be acquired, and there is enough of material to provide a global solution. In addition, the amount of solar energy that hits the surface of the earth in a day is orders of magnitude more than the amount of energy we require. The main goal of this project is to have an effective accessible tool to teach people about solar. Thus, the lectured will be posted on pveducation.com, YouTube, the Barrett repository, and the QUSST website. The content was acquired in four ways. The first way is reading up on the current papers and journals describing the new developments in photovoltaics. The second part is getting in contact with Stuart Bowden and Bill Daukser at Arizona State University's Solar Power Lab as well as the other faculty associated with the Solar Power Lab. There is quite a bit of novel research going on at their lab, as well as a student run pilot line that is actively building solar cells. The third way is reading about solar device physics using device physics textbooks and the PVEducation website made by Stuart Bowden. The forth way is going into ASU's solar power lab.
ContributorsLeBeau, Edward (Author) / Goryll, Michael (Thesis director) / Bowden, Stuart (Committee member) / Dauksher, William (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
135382-Thumbnail Image.png
Description
In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is

In competitive Taekwondo, Electronic Body Protectors (EBPs) are used to register hits made by players during sparring. EBPs are comprised of three main components: chest guard, foot sock, and headgear. This equipment interacts with each other through the use of magnets, electric sensors, transmitters, and a receiver. The receiver is connected to a computer programmed with software to process signals from the transmitter and determine whether or not a competitor scored a point. The current design of EBPs, however, have numerous shortcomings, including sensing false positives, failing to register hits, costing too much, and relying on human judgment. This thesis will thoroughly delineate the operation of the current EBPs used and discuss research performed in order to eliminate these weaknesses.
ContributorsSpell, Valerie Anne (Author) / Kozicki, Michael (Thesis director) / Kitchen, Jennifer (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05