Matching Items (8)
Filtering by

Clear all filters

154709-Thumbnail Image.png
Description
This is a project about medicine and the history of a condition called premenstrual syndrome (PMS), its “discovery” and conceptual development at both scientific and socio-cultural levels. Since it was first mentioned in medical literature, PMS has been explored empirically as a medical condition and conceptually as non-somatic cultural phenomenon.

This is a project about medicine and the history of a condition called premenstrual syndrome (PMS), its “discovery” and conceptual development at both scientific and socio-cultural levels. Since it was first mentioned in medical literature, PMS has been explored empirically as a medical condition and conceptually as non-somatic cultural phenomenon. Many attempts have been made to produce scientific, empirical evidence to bolster the theory of PMS as a biological disease. Some non-medical perspectives argue that invoking biology as the cause of PMS medicalizes a natural function of the female reproductive system and shallowly interrogates what is actually a complex bio-psycho-social phenomenon. This thesis questions both sides of this debate in order to reveal how criteria for PMS were categorized despite disagreement surrounding its etiology.

This thesis illustrates how the concept of PMS developed and was informed by the discovery of hormones and the resulting field of endocrinology that provided a framework for conceptualizing PMS. It displays how the development of the medical diagnostic category of PMS developed in tandem with the emergence of the field of endocrinology and was legitimized and effectively medicalized through this connection. The diagnosis of PMS became established though the diagnostic techniques like questionnaires in spite of persistent disagreement over its definition. The thesis shows how these medical concepts and practices legitimated the category of PMS, and how it has become ubiquitous in contemporary culture.
ContributorsZietal, Bianca (Author) / Hurlbut, James (Thesis advisor) / Robert, Jason (Committee member) / Brian, Jennifer (Committee member) / Arizona State University (Publisher)
Created2016
154832-Thumbnail Image.png
Description
Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a

Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a question worth examining. Did systems biology become a systems-oriented science or a biology-oriented science from 1992 to 2013?

This project utilized computational tools to analyze large data sets and interpreted the results from historical and philosophical perspectives. Tools deployed were derived from scientometrics, corpus linguistics, text-based analysis, network analysis, and GIS analysis to analyze more than 9000 articles (metadata and text) on systems biology. The application of these tools to a HPS project represents a novel approach.

The dissertation shows that systems biology has transitioned from a more mathematical, computational, and engineering-oriented discipline focusing on modeling to a more biology-oriented discipline that uses modeling as a means to address real biological problems. Also, the results show that bioengineering and medical research has increased within systems biology. This is reflected in the increase of the centrality of biology-related concepts such as cancer, over time. The dissertation also compares the development of systems biology in China with some other parts of the world, and reveals regional differences, such as a unique trajectory of systems biology in China related to a focus on traditional Chinese medicine.

This dissertation adds to the historiography of modern biology where few studies have focused on systems biology compared with the history of molecular biology and evolutionary biology.
ContributorsZou, Yawen (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Ellison, Karin (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2016
154993-Thumbnail Image.png
Description
In the fifteen years between the discovery of fetal alcohol syndrome (FAS) in 1973 and the passage of alcohol beverage warning labels in 1988, FAS transformed from a medical diagnosis between practitioner and pregnant women to a broader societal risk imbued with political and cultural meaning. I examine how scientific,

In the fifteen years between the discovery of fetal alcohol syndrome (FAS) in 1973 and the passage of alcohol beverage warning labels in 1988, FAS transformed from a medical diagnosis between practitioner and pregnant women to a broader societal risk imbued with political and cultural meaning. I examine how scientific, social, moral, and political narratives dynamically interacted to construct the risk of drinking during pregnancy and the public health response of health warning labels on alcohol. To situate such phenomena I first observe the closest regulatory precedents, the public health responses to thalidomide and cigarettes, which established a federal response to fetal risk. I then examine the history of how the US defined and responded to the social problem of alcoholism, paying particular attention to the role of women in that process. Those chapters inform my discussion of how the US reengaged with alcohol control at the federal level in the last quarter of the twentieth century. In the 1970s, FAS allowed federal agencies to carve out disciplinary authority, but robust public health measures were tempered by uncertainty surrounding issues of bureaucratic authority over labeling, and the mechanism and extent of alcohol’s impact on development. A socially conservative presidency, dramatic budgetary cuts, and increased industry funding reshaped the public health approach to alcoholism in the 1980s. The passage of labeling in 1988 required several conditions: a groundswell of other labeling initiatives that normalized the practice; the classification of other high profile, socially unacceptable alcohol-related behaviors such as drunk driving and youth drinking; and the creation of a dual public health population that faced increased medical, social, and political scrutiny, the pregnant woman and her developing fetus.
ContributorsO'Neil, Erica (Author) / Maienschein, Jane (Thesis advisor) / Hurlbut, James (Committee member) / Ellison, Karin (Committee member) / Wetmore, Jameson (Committee member) / Arizona State University (Publisher)
Created2016
155366-Thumbnail Image.png
Description
This dissertation begins to lay out a small slice of the history of morphological research, and how it has changed, from the late 19th through the close of the 20th century. Investigators using different methods, addressing different questions, holding different assumptions, and coming from different research fields have pursued morphological

This dissertation begins to lay out a small slice of the history of morphological research, and how it has changed, from the late 19th through the close of the 20th century. Investigators using different methods, addressing different questions, holding different assumptions, and coming from different research fields have pursued morphological research programs, i.e. research programs that explore the process of changing form. Subsequently, the way in which investigators have pursued and understood morphology has witnessed significant changes from the 19th century to modern day research. In order to trace this shifting history of morphology, I have selected a particular organ, teeth, and traced a tendril of research on the dentition beginning in the late 19th century and ending at the year 2000. But even focusing on teeth would be impossible; the scope of research on this organ is far too vast. Instead, I narrow this dissertation to investigation of research on a particular problem: explaining mammalian tooth morphology. How researchers have investigated mammalian tooth morphology and what counts as an explanation changed dramatically during this period.
ContributorsMacCord, Katherine (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Thesis advisor) / Laplane, Lucie (Committee member) / Kimbel, William (Committee member) / Creath, Richard (Committee member) / Hurlbut, Benjamin (Committee member) / Arizona State University (Publisher)
Created2017
137810-Thumbnail Image.png
Description
In 2004, the South Korean geneticist Woo-Suk Hwang published what was widely regarded as the most important research result in biotechnology of the year. In the prestigious American journal Science, he claimed that he had succeeded in cloning a human blastocyst, an embryo in its early stages (Hwang et al.

In 2004, the South Korean geneticist Woo-Suk Hwang published what was widely regarded as the most important research result in biotechnology of the year. In the prestigious American journal Science, he claimed that he had succeeded in cloning a human blastocyst, an embryo in its early stages (Hwang et al. 2004). A year later, in a second Science article, he made the earth-shattering announcement that he had derived eleven embryonic stem cell lines using his cloning technique (Hwang et al. 2005). The international scientific community was stunned. American scientists publicly fretted that President George W. Bush‘s 2001 executive order limiting federal funding for stem-cell research in the United States had put American bioscience behind the Koreans‘ (Paarlberg 2005). These breakthroughs offered potential solutions to immune system rejection of transplanted organs and possible cures for diseases such as rheumatoid arthritis, Parkinson‘s, Down‘s syndrome, and paralysis (Svenaeus 2007). However, within a year, Hwang was exposed as a fraud who had faked his results and pressured his female colleagues to donate eggs without informed consent. Despite protests against his methods from Korean religious and nongovernmental organizations, Hwang had used his prestige to ignore his ethical obligations. The Korean government, too, was slow to investigate Hwang and to subject his work to appropriate regulation.
ContributorsClay, Anne (Author) / Hurlbut, James (Thesis director) / Maienschein, Jane (Committee member) / Marchant, Gary (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2012-12
137836-Thumbnail Image.png
Description
Spongiform Encephalopathies are a rare family of degenerative brain diseases characterized by the accumulation of plaques and formation of tiny holes in the brain tissue making it look "spongy". Spongiform Encephalopathies have a relatively short history but their origins date back to a time long before they were recognized as

Spongiform Encephalopathies are a rare family of degenerative brain diseases characterized by the accumulation of plaques and formation of tiny holes in the brain tissue making it look "spongy". Spongiform Encephalopathies have a relatively short history but their origins date back to a time long before they were recognized as a disease. It was not until the 1700s that the first record of their existence was made. In 1732 a shepherd in England noticed that some sheep in his flock had become itchy and were "scraping" themselves on nearby trees and fence posts; he reported it to the agricultural authorities of the time. As the symptoms seen in his sheep progressed they also developed problems walking and began to have seizures. Eventually their neurological symptoms progressed to an unmanageable level and they died. In 1794, over 50 years later, the Board of Agriculture in the UK termed this illness in sheep "the Rubbers". In the following years while coming in and out of mention in many flocks of sheep "the Rubbers" remained a disease of minimal consequence showing negligible ability to spread among sheep and having no precedence for jumping the species barrier and affecting humans. The first mention of "the Rubbers" as Scrapie was in 1853, and it is still the designation of the disease in sheep today.
ContributorsPruniski, Brianna (Author) / Green, Monica (Thesis director) / Hurlbut, James (Committee member) / Hunter, Joel (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
157324-Thumbnail Image.png
Description
This dissertation examines the efforts of the Carnegie Image Tube Committee (CITC), a group created by Vannevar Bush and composed of astronomers and physicists, who sought to develop a photoelectric imaging device, generally called an image tube, to aid astronomical observations. The Carnegie Institution of Washington’s Department of Terrestrial Magnetism

This dissertation examines the efforts of the Carnegie Image Tube Committee (CITC), a group created by Vannevar Bush and composed of astronomers and physicists, who sought to develop a photoelectric imaging device, generally called an image tube, to aid astronomical observations. The Carnegie Institution of Washington’s Department of Terrestrial Magnetism coordinated the CITC, but the committee included members from observatories and laboratories across the United States. The CITC, which operated from 1954 to 1976, sought to replace direct photography as the primary means of astronomical imaging.

Physicists, who gained training in electronics during World War II, led the early push for the development of image tubes in astronomy. Vannevar Bush’s concern for scientific prestige led him to form a committee to investigate image tube technology, and postwar federal funding for the sciences helped the CITC sustain development efforts for a decade. During those development years, the CITC acted as a mediator between the astronomical community and the image tube producers but failed to engage astronomers concerning various development paths, resulting in a user group without real buy-in on the final product.

After a decade of development efforts, the CITC designed an image tube, which Radio Corporation of American manufactured, and, with additional funding from the National Science Foundation, the committee distributed to observatories around the world. While excited about the potential of electronic imaging, few astronomers used the Carnegie-developed device regularly. Although the CITC’s efforts did not result in an overwhelming adoption of image tubes by the astronomical community, examining the design, funding, production, and marketing of the Carnegie image tube shows the many and varied processes through which astronomers have acquired new tools. Astronomers’ use of the Carnegie image tube to acquire useful scientific data illustrates factors that contribute to astronomers’ adoption or non-adoption of those new tools.
ContributorsThompson, Samantha Michelle (Author) / Ellison, Karin (Thesis advisor) / Wetmore, Jameson (Thesis advisor) / Maienschein, Jane (Committee member) / Creath, Richard (Committee member) / DeVorkin, David (Committee member) / Arizona State University (Publisher)
Created2019
171970-Thumbnail Image.png
Description
Writing speculative fiction is a valuable method for exploring the potential societal transformations elicited by advances in science and technology. The aim of this project is to use speculative fiction to explore the potential consequences of precision medicine for individuals’ daily lives. Precision medicine is a vision of the future

Writing speculative fiction is a valuable method for exploring the potential societal transformations elicited by advances in science and technology. The aim of this project is to use speculative fiction to explore the potential consequences of precision medicine for individuals’ daily lives. Precision medicine is a vision of the future in which medicine is about predicting, and ultimately preventing disease before symptoms arise. The idea is that identification of all the factors that influence health and contribute to disease development will translate to better and less expensive healthcare and empower individuals to take responsibility for maintaining their own health and wellness. That future, as envisioned by the leaders of the Human Genome Project, the Institute for Systems Biology, and the Obama administration’s Precision Medicine Initiative, is assumed to be a shared future, one that everyone desires and that is self-evidently “better” than the present. The aim of writing speculative fiction about a “precision medicine” future is to challenge that assumption, to make clear the values underpinning that vision of precision medicine, and to leave open the question of what other possible futures could be imagined instead.
ContributorsVenkatraman, Richa (Author) / Brian, Jennifer (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Hurlbut, James (Committee member) / Arizona State University (Publisher)
Created2022