Matching Items (11)
Filtering by

Clear all filters

133368-Thumbnail Image.png
Description
Supernovae are vital to supplying necessary elements to forming bodies in our solar systems. This project studies the creation of a subset of these necessary elements, called short-lived radionuclides (SLRs). SLRs are isotopes with relatively short half-lives and can serve as heat sources for forming planetary bodies, and their traces

Supernovae are vital to supplying necessary elements to forming bodies in our solar systems. This project studies the creation of a subset of these necessary elements, called short-lived radionuclides (SLRs). SLRs are isotopes with relatively short half-lives and can serve as heat sources for forming planetary bodies, and their traces can be used to date stellar events. Computational models of asymmetric supernovae provide opportunities to study the effect of explosion geometry on the SLR yields. We are most interested in the production of \iso{Al}{26}, \iso{Fe}{60}, and \iso{Ca}{41}, whose decayed products are found in our own solar system. To study the effect of explosion asymmetries in supernovae, we use TYCHO stellar evolution code, SNSHP smooth particle hydrodynamics code for 3D explosion simulations, Burn code for nucleosythesis post-processing, and Python code written to analyze the output of the post-processing code.
ContributorsJohnson, Charlotte (Author) / Young, Patrick (Thesis director) / Lunardini, Cecilia (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136499-Thumbnail Image.png
Description
In a pure spin current, electrons of opposite spins flow in opposite directions, thus information is conveyed by spin current without any charge current. This process almost causes no power consumption, which has the potential to realize ultra-low-power-consumption electronics. Recently, thermal effects in magnetic materials have attracted a great deal

In a pure spin current, electrons of opposite spins flow in opposite directions, thus information is conveyed by spin current without any charge current. This process almost causes no power consumption, which has the potential to realize ultra-low-power-consumption electronics. Recently, thermal effects in magnetic materials have attracted a great deal of attention because of its potential to generate pure spin currents using a thermal gradient (∇T), such as the spin Seebeck effect. However, unlike electric potential, the exact thermal gradient direction is experimentally difficult to control, which has already caused misinterpretation of the thermal effects in Py and Py/Pt films. In this work, we show that a well-defined ∇T can be created by two thermoelectric coolers (TECs) based on Peltier effect. The ∇T as well as its sign can be accurately controlled by the driven voltage on the TECs. Using a square-wave driven potential, thermal effects of a few μV can be measured. Using this technique, we have measured the anomalous Nernst effect in magnetic Co/Py and Py/Pt layers and determined their angular dependence. The angular dependence shows the same symmetry as the anomalous Hall effect in these films.
This work has been carried out under the guidance of the author’s thesis advisor, Professor Tingyong Chen.
ContributorsSimaie, Salar (Author) / Chen, Tingyon (Thesis director) / Alizadeh, Iman (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Physics (Contributor)
Created2015-05
132843-Thumbnail Image.png
Description
News outlets frequently portray people with disabilities as either helpless victims or objects of motivation. Portrayal of people with disabilities has improved over the years, but there is still room to grow. News outlets tend to make disability the center of the story. A story about a disabled person is

News outlets frequently portray people with disabilities as either helpless victims or objects of motivation. Portrayal of people with disabilities has improved over the years, but there is still room to grow. News outlets tend to make disability the center of the story. A story about a disabled person is primarily about their disability, with their other accomplishments framed by it.

As one example of the victimhood narrative, ABC News used to run a special called My Extreme Affliction as part of 20/20 until 2012. As the name implies, the specials covered people with disabilities, specifically extreme versions. One 2008 episode on Tourette’s syndrome described Tourette’s like it was some sort of demonic possession. The narrator talked about children who were “prisoners in their own bodies” and a family that was at risk of being “torn apart by Tourette’s.” I have Tourette’s syndrome myself, which made ABC’s special especially uncomfortable to watch. When not wringing their metaphorical hands over the “victims” of disability, many news outlets fall into the “supercrip” narrative. They refer to people as “heroes” who “overcome” their disabilities to achieve something that ranges from impressive to utterly mundane. The main emphasis is on the disability rather than the person who has it. These articles then exploit that disability to make readers feel good. As a person with a disability, I am aware that it impacts my life, but it is not the center of my life. The tics from my Tourette’s syndrome made it difficult to speak to people when I was younger, but even then they did not rule me.

Disability coverage, however, is still incredibly important for promoting acceptance and giving people with disabilities a voice. A little over a fifth of adults in the United States have a disability (CDC: 53 million adults in the US live with a disability), so poor coverage means marginalizing or even excluding a large amount of people. Journalists should try to reach their entire audience. The news helps shape public opinion with the stories it features. Therefore, it should provide visibility for people with disabilities in order to increase acceptance. This is a matter of civil rights. People with disabilities deserve fair and accurate representation.

My personal experience with ABC’s Tourette’s special leads me to believe that the media, especially the news, needs to be more responsible in their reporting. Even the name “My Extreme Affliction” paints a poor picture of what to expect. A show that focuses on sensationalist portrayals in pursuit of views further ostracizes people with disabilities. The emphasis should be on a person and not their condition. The National Center for Disability Journalism tells reporters to “Focus on the person you are interviewing, not the disability” (Tips for interviewing people with disabilities). This people-first approach is the way to improve disability coverage: Treat people with disabilities with the same respect as any other minority group.
ContributorsMackrell, Marguerite (Author) / Gilger, Kristin (Thesis director) / Doig, Steve (Committee member) / Walter Cronkite School of Journalism & Mass Comm (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
148402-Thumbnail Image.png
Description

Optometry is an important field in medicine as it allows people a chance to have their vision corrected and it serves as a health screening opportunity for those who receive a dilated eye examination. One of the largest barriers to receiving a dilated eye exam is insurance coverage. Most health

Optometry is an important field in medicine as it allows people a chance to have their vision corrected and it serves as a health screening opportunity for those who receive a dilated eye examination. One of the largest barriers to receiving a dilated eye exam is insurance coverage. Most health insurance policies have limited optometric coverage. By expanding health insurance plans to be more inclusive of optometric care, people who use these health insurance plans will have a better access of care.

ContributorsFurey, Colleen (Author) / Ruth, Alissa (Thesis director) / Mullen, Tyler (Committee member) / School of Life Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148341-Thumbnail Image.png
Description

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the behavior of electrons whose combined internal angular momentum is zero. This paper will go over Dr. Bell's famous inequality, which shows why the process of entanglement cannot be explained by traditional means of local processes. Entanglement will be viewed initially through the Copenhagen Interpretation, but this paper will also look at two particular models of quantum mechanics, de-Broglie Bohm theory and Everett's Many-Worlds Interpretation, and observe how they explain the behavior of spin and entangled particles compared to the Copenhagen Interpretation.

ContributorsWood, Keaten Lawrence (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and PHY302. This guide can stand on its own and be

This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and PHY302. This guide can stand on its own and be used in other upper division physics courses as a handbook for common special functions. Additionally, we have created several Mathematica notebooks that showcase and visualize some of the topics discussed (available from the GitHub link in the introduction of the guide).
ContributorsUnterkofler, Eric (Author) / Skinner, Tristin (Co-author) / Covatto, Carl (Thesis director) / Keeler, Cynthia (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-12
Description

This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and PHY302. This guide can stand on its own and be

This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and PHY302. This guide can stand on its own and be used in other upper division physics courses as a handbook for common special functions. Additionally, we have created several Mathematica notebooks that showcase and visualize some of the topics discussed (available from the GitHub link in the introduction of the guide).

ContributorsSkinner, Tristin (Author) / Unterkofler, Eric (Co-author) / Covatto, Carl (Thesis director) / Keeler, Cynthia (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-12
130860-Thumbnail Image.png
Description

We present the isotope yields of two post-explosion, three-dimensional 15 M_sol core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of presolar SiC stardust. We find that material from the interior of a core-collapse supernova can

We present the isotope yields of two post-explosion, three-dimensional 15 M_sol core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of presolar SiC stardust. We find that material from the interior of a core-collapse supernova can form a rare subset of SiC stardust, called SiC D grains, characterized by enrichments of the isotopes 13C and 15N. The innermost material of these core-collapse supernovae is operating in the neutrino-driven regime and undergoes rapid proton capture early in the explosion, providing these isotopes which are not present in such large abundances in other stardust grains of supernova origin.

ContributorsSchulte, Jack (Author) / Bose, Maitrayee (Thesis director) / Foy, Joseph (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
166204-Thumbnail Image.png
Description

In thesis we will build up our operator theory for finite and infinite dimensional systems. We then prove that Heisenberg and Schrodinger representations are equivalent for systems with finite degrees of freedom. We will then make a case to switch to a C*-algebra formulation of quantum mechanics as we will

In thesis we will build up our operator theory for finite and infinite dimensional systems. We then prove that Heisenberg and Schrodinger representations are equivalent for systems with finite degrees of freedom. We will then make a case to switch to a C*-algebra formulation of quantum mechanics as we will prove that the Schrodinger and Heisenberg pictures become inadequate to full describe systems with infinitely many degrees of freedom because of inequivalent representations. This becomes important as we shift from single particle systems to quantum field theory, statistical mechanics, and many other areas of study. The goal of this thesis is to introduce these mathematical topics rigorously and prove that they are necessary for further study in particle physics.

ContributorsPerleberg, Sarah (Author) / Quigg, John (Thesis director) / Lebed, Richard (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
164951-Thumbnail Image.png
Description

This is a primer on the mathematic foundation of quantum mechanics. It seeks to introduce the topic in such a way that it is useful to both mathematicians and physicists by providing an extended example of abstract math concepts to work through and by going more in-depth in the math

This is a primer on the mathematic foundation of quantum mechanics. It seeks to introduce the topic in such a way that it is useful to both mathematicians and physicists by providing an extended example of abstract math concepts to work through and by going more in-depth in the math formalism than would normally be covered in a quantum mechanics class. The thesis begins by investigating functional analysis topics such as the Hilbert space and operators acting on them. Then it goes on to the postulates of quantum mechanics which extends the math formalism covered before to physics and works as the foundation for the rest of quantum mechanics.

ContributorsRedford, Thomas (Author) / Hines, Taylor (Thesis director) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05