Matching Items (8)
Filtering by

Clear all filters

133368-Thumbnail Image.png
Description
Supernovae are vital to supplying necessary elements to forming bodies in our solar systems. This project studies the creation of a subset of these necessary elements, called short-lived radionuclides (SLRs). SLRs are isotopes with relatively short half-lives and can serve as heat sources for forming planetary bodies, and their traces

Supernovae are vital to supplying necessary elements to forming bodies in our solar systems. This project studies the creation of a subset of these necessary elements, called short-lived radionuclides (SLRs). SLRs are isotopes with relatively short half-lives and can serve as heat sources for forming planetary bodies, and their traces can be used to date stellar events. Computational models of asymmetric supernovae provide opportunities to study the effect of explosion geometry on the SLR yields. We are most interested in the production of \iso{Al}{26}, \iso{Fe}{60}, and \iso{Ca}{41}, whose decayed products are found in our own solar system. To study the effect of explosion asymmetries in supernovae, we use TYCHO stellar evolution code, SNSHP smooth particle hydrodynamics code for 3D explosion simulations, Burn code for nucleosythesis post-processing, and Python code written to analyze the output of the post-processing code.
ContributorsJohnson, Charlotte (Author) / Young, Patrick (Thesis director) / Lunardini, Cecilia (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132843-Thumbnail Image.png
Description
News outlets frequently portray people with disabilities as either helpless victims or objects of motivation. Portrayal of people with disabilities has improved over the years, but there is still room to grow. News outlets tend to make disability the center of the story. A story about a disabled person is

News outlets frequently portray people with disabilities as either helpless victims or objects of motivation. Portrayal of people with disabilities has improved over the years, but there is still room to grow. News outlets tend to make disability the center of the story. A story about a disabled person is primarily about their disability, with their other accomplishments framed by it.

As one example of the victimhood narrative, ABC News used to run a special called My Extreme Affliction as part of 20/20 until 2012. As the name implies, the specials covered people with disabilities, specifically extreme versions. One 2008 episode on Tourette’s syndrome described Tourette’s like it was some sort of demonic possession. The narrator talked about children who were “prisoners in their own bodies” and a family that was at risk of being “torn apart by Tourette’s.” I have Tourette’s syndrome myself, which made ABC’s special especially uncomfortable to watch. When not wringing their metaphorical hands over the “victims” of disability, many news outlets fall into the “supercrip” narrative. They refer to people as “heroes” who “overcome” their disabilities to achieve something that ranges from impressive to utterly mundane. The main emphasis is on the disability rather than the person who has it. These articles then exploit that disability to make readers feel good. As a person with a disability, I am aware that it impacts my life, but it is not the center of my life. The tics from my Tourette’s syndrome made it difficult to speak to people when I was younger, but even then they did not rule me.

Disability coverage, however, is still incredibly important for promoting acceptance and giving people with disabilities a voice. A little over a fifth of adults in the United States have a disability (CDC: 53 million adults in the US live with a disability), so poor coverage means marginalizing or even excluding a large amount of people. Journalists should try to reach their entire audience. The news helps shape public opinion with the stories it features. Therefore, it should provide visibility for people with disabilities in order to increase acceptance. This is a matter of civil rights. People with disabilities deserve fair and accurate representation.

My personal experience with ABC’s Tourette’s special leads me to believe that the media, especially the news, needs to be more responsible in their reporting. Even the name “My Extreme Affliction” paints a poor picture of what to expect. A show that focuses on sensationalist portrayals in pursuit of views further ostracizes people with disabilities. The emphasis should be on a person and not their condition. The National Center for Disability Journalism tells reporters to “Focus on the person you are interviewing, not the disability” (Tips for interviewing people with disabilities). This people-first approach is the way to improve disability coverage: Treat people with disabilities with the same respect as any other minority group.
ContributorsMackrell, Marguerite (Author) / Gilger, Kristin (Thesis director) / Doig, Steve (Committee member) / Walter Cronkite School of Journalism & Mass Comm (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
148402-Thumbnail Image.png
Description

Optometry is an important field in medicine as it allows people a chance to have their vision corrected and it serves as a health screening opportunity for those who receive a dilated eye examination. One of the largest barriers to receiving a dilated eye exam is insurance coverage. Most health

Optometry is an important field in medicine as it allows people a chance to have their vision corrected and it serves as a health screening opportunity for those who receive a dilated eye examination. One of the largest barriers to receiving a dilated eye exam is insurance coverage. Most health insurance policies have limited optometric coverage. By expanding health insurance plans to be more inclusive of optometric care, people who use these health insurance plans will have a better access of care.

ContributorsFurey, Colleen (Author) / Ruth, Alissa (Thesis director) / Mullen, Tyler (Committee member) / School of Life Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148192-Thumbnail Image.png
Description

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target the protein. Therefore, this study attempted to find methods for expressing and purifying P66 in quantities that can be used for structural studies. It was found that by using the PelB signal sequence, His-tagged P66 could be directed to the outer membrane of Escherichia coli, as confirmed by an anti-His Western blot. Further attempts to optimize P66 expression in the outer membrane were made, pending verification via Western blotting. The ability to direct P66 to the outer membrane using the PelB signal sequence is a promising first step in determining the overall structure of P66, but further work is needed before P66 is ready for large-scale purification for structural studies.

ContributorsRamirez, Christopher Nicholas (Author) / Fromme, Petra (Thesis director) / Hansen, Debra (Committee member) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131674-Thumbnail Image.png
Description
Although extracellular throughout their lifecycle, trypanosomes are able to persist despite strong host immune responses through a process known as antigenic variation involving a large, highly diverse family of surface glycopro- tein (VSG) genes, only one of which is expressed at a time. Previous studies have used mathematical models to

Although extracellular throughout their lifecycle, trypanosomes are able to persist despite strong host immune responses through a process known as antigenic variation involving a large, highly diverse family of surface glycopro- tein (VSG) genes, only one of which is expressed at a time. Previous studies have used mathematical models to investigate the relationship between VSG switching and the dynamics of trypanosome infections, but none have explored the role of multiple VSG expression sites or the contribution of mosaic gene conversion events involving VSG pseudogenes.
ContributorsKoury, Michael Andrew (Author) / Taylor, Jesse (Thesis director) / Gumel, Abba (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131608-Thumbnail Image.png
Description
This research evaluates the capabilities of typical radiological measures and dual-energy systems to differentiate common kidney stones materials: uric acid, oxalates, phosphates, struvite, and cystine. Two different X-ray spectra (80 kV and 120 kV) were applied and the dual-energy ratio of individual kidney stones was used to figure out the

This research evaluates the capabilities of typical radiological measures and dual-energy systems to differentiate common kidney stones materials: uric acid, oxalates, phosphates, struvite, and cystine. Two different X-ray spectra (80 kV and 120 kV) were applied and the dual-energy ratio of individual kidney stones was used to figure out the discriminability of different materials. A CT cross-section with a prospective kidney stone was analyzed to see the capabilities of such a technique. Typical radiological measures suggested that phosphates and oxalate stones can be distinguished from uric acid stones while dual-energy seemed to prove similar effectiveness.
ContributorsDelafuente, Nicholas William (Author) / Rez, Peter (Thesis director) / Alarcon, Ricardo (Committee member) / Department of Physics (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
130860-Thumbnail Image.png
Description

We present the isotope yields of two post-explosion, three-dimensional 15 M_sol core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of presolar SiC stardust. We find that material from the interior of a core-collapse supernova can

We present the isotope yields of two post-explosion, three-dimensional 15 M_sol core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of presolar SiC stardust. We find that material from the interior of a core-collapse supernova can form a rare subset of SiC stardust, called SiC D grains, characterized by enrichments of the isotopes 13C and 15N. The innermost material of these core-collapse supernovae is operating in the neutrino-driven regime and undergoes rapid proton capture early in the explosion, providing these isotopes which are not present in such large abundances in other stardust grains of supernova origin.

ContributorsSchulte, Jack (Author) / Bose, Maitrayee (Thesis director) / Foy, Joseph (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
166248-Thumbnail Image.png
Description

The first extrasolar planet discovered orbited the millisecond pulsar PSR B1257+12. These so-called "pulsar planets" have proved to be more uncommon than their early discovery might have suggested. The proximity of many known pulsar planets to their host neutron stars indicates that they formed post-supernova, possibly from material produced in

The first extrasolar planet discovered orbited the millisecond pulsar PSR B1257+12. These so-called "pulsar planets" have proved to be more uncommon than their early discovery might have suggested. The proximity of many known pulsar planets to their host neutron stars indicates that they formed post-supernova, possibly from material produced in the supernova. Any pre-existing planets that close would have been obliterated in the supernova. Material from the supernova falls back to an accretion disk around the neutron star analogous to a protoplanetary disk around a protostar. The composition of the supernova thus determines the composition of the planet-forming material. The pulsar planet then forms from collisions between particles within the disk. This research examines the composition of supernova remnants to explore this formation process. Chemical abundances of supernova ejecta were obtained from 3D supernova simulations. The velocities of particles containing silicate-mineral forming elements were filtered to determine what might stay in the system and thus be available for the formation of a fallback disk. The abundances of the remaining particles were compared to characterize the potential composition of such a fallback disk. Overall, the composition was roughly silicate-like, but the rates of mixing versus dust formation could lead to the production of highly exotic minerals.

ContributorsCranmer, Catherine (Author) / Young, Patrick (Thesis director) / Desch, Steven (Committee member) / Patience, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05