Matching Items (15)
Filtering by

Clear all filters

Description
Supply chain sustainability has become an increasingly important topic for corporations due to consumer demands, regulatory requirements, and employee retention and productivity. Since more and more stakeholders are beginning to care about sustainability, companies are looking at how they can reduce their carbon footprint without it leading to higher costs. Although sustainable supply chain

Supply chain sustainability has become an increasingly important topic for corporations due to consumer demands, regulatory requirements, and employee retention and productivity. Since more and more stakeholders are beginning to care about sustainability, companies are looking at how they can reduce their carbon footprint without it leading to higher costs. Although sustainable supply chain operations are often associated with higher costs, new technology has surfaced within the last decade that makes this association come into question. This paper serves as an investigation on whether or not implementation of recent technology will not only make for more sustainable supply chains, but also bring cost savings to a company. For the sake of simplicity, this paper analyzes the topic within the context of the consumer packaged goods (CPG) industry. The three categories of technology that were evaluated are artificial intelligence, Internet of Things, and data integration systems. Internship projects and/or published case studies and articles were examined to explore the relationship between the technology, supply chain sustainability, and costs. The findings of this paper indicate that recent technology offers companies innovative sustainability solutions to supply chains without sacrificing cost. This calls for CPG companies to invest in and implement technology that allows for more sustainable supply chains. Shying away from this because of cost concerns is no longer necessary.
ContributorsDixon, Logan (Author) / Printezis, Antonios (Thesis director) / Macias, Jeff (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2024-05
132258-Thumbnail Image.png
Description
There is a growing demand for discrete graphics processing units (dGPU) in the internet of things. Our subject company, Company X, has decided to develop a dGPU to be used in client computing (desktops, laptops, etc). This project will address whether or not company X should invest time and money

There is a growing demand for discrete graphics processing units (dGPU) in the internet of things. Our subject company, Company X, has decided to develop a dGPU to be used in client computing (desktops, laptops, etc). This project will address whether or not company X should invest time and money into adopting their existing client focused dGPU for applications in IoT such as digital signage, gaming, or medical imaging. If this investment is to be made, we will also make specific recommendations about how Company X should enter the IoT space. The project will be completed in three stages. The first stage will consist of an analysis of the competitive landscape and research on dGPUs and how they differ from integrated GPUs. Stage two will focus primarily on the IoT space and how the competitors are using dGPUs in the IoT along with an analysis of three potential use cases for Company X’s dGPU. Finally, we will build a comprehensive financial model based on our research of one specific IoT segment where Company X could potentially enter. Based on these stages, we will then offer a conclusion and recommendation on whether Company X should invest in this project.
ContributorsSmith, Jesse Thomas (Co-author) / Nickel, Jack (Co-author) / Sethia, Priyanka (Co-author) / Morey, Jake (Co-author) / Bergauer, Kevin (Co-author) / Simonson, Mark (Thesis director) / Kreutner, Caleb (Committee member) / School of Sustainability (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
164316-Thumbnail Image.png
Description
While a fairly new concept, Internet of Things (IoT) has become an important part of the business structure and operating segments of many technology companies in the last decade. IoT refers to the evolution of devices that, connected to the internet, can share and integrate information, becoming an always-growing intelligent

While a fairly new concept, Internet of Things (IoT) has become an important part of the business structure and operating segments of many technology companies in the last decade. IoT refers to the evolution of devices that, connected to the internet, can share and integrate information, becoming an always-growing intelligent system of systems. As a leader in the semiconductor industry, Company X and its growing IoT division, have constant new challenges and opportunities given the complexity of the IoT field. The business model employed by the IoT division includes adopting and modifying existing technologies and products from its sister groups within Company X. Since these products are being leveraged by the IoT division, it makes indirect research and development allocation for said products much more complex. This thesis will address how the IoT division at Company X can approach this problem in the most beneficial way for the division and company as a whole through the analysis of two allocation methodologies: percentage of revenue (Allocation Basis 1) and percentage of direct research and development (Allocation Basis 2).
ContributorsJerez Casillas, Diana (Author) / Abang, Joycelyn (Co-author) / Stanek, Christopher (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2022-05
164319-Thumbnail Image.png
Description
While a fairly new concept, Internet of Things (IoT) has become an important part of the business structure and operating segments of many technology companies in the last decade. IoT refers to the evolution of devices that, connected to the internet, can share and integrate information, becoming an always-growing intelligent

While a fairly new concept, Internet of Things (IoT) has become an important part of the business structure and operating segments of many technology companies in the last decade. IoT refers to the evolution of devices that, connected to the internet, can share and integrate information, becoming an always-growing intelligent system of systems. As a leader in the semiconductor industry, Company X and its growing IoT division, have constant new challenges and opportunities given the complexity of the IoT field. The business model employed by the IoT division includes adopting and modifying existing technologies and products from its sister groups within Company X. Since these products are being leveraged by the IoT division, it makes indirect research and development allocation for said products much more complex. This thesis will address how the IoT division at Company X can approach this problem in the most beneficial way for the division and company as a whole through the analysis of two allocation methodologies: percentage of revenue (Allocation Basis 1) and percentage of direct research and development (Allocation Basis 2).
ContributorsStanek, Christopher (Author) / Jerez Casillas, Diana (Co-author) / Abang, Joycelyn (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor)
Created2022-05
164337-Thumbnail Image.png
Description
While a fairly new concept, Internet of Things (IoT) has become an important part of the business structure and operating segments of many technology companies in the last decade. IoT refers to the evolution of devices that, connected to the internet, can share and integrate information, becoming an always-growing intelligent

While a fairly new concept, Internet of Things (IoT) has become an important part of the business structure and operating segments of many technology companies in the last decade. IoT refers to the evolution of devices that, connected to the internet, can share and integrate information, becoming an always-growing intelligent system of systems. As a leader in the semiconductor industry, Company X and its growing IoT division, have constant new challenges and opportunities given the complexity of the IoT field. The business model employed by the IoT division includes adopting and modifying existing technologies and products from its sister groups within Company X. Since these products are being leveraged by the IoT division, it makes indirect research and development allocation for said products much more complex. This thesis will address how the IoT division at Company X can approach this problem in the most beneficial way for the division and company as a whole through the analysis of two allocation methodologies: percentage of revenue (Allocation Basis 1) and percentage of direct research and development (Allocation Basis 2).
ContributorsAbang, Joycelyn (Author) / Jerez Casillas, Diana (Co-author) / Stanek, Christopher (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor)
Created2022-05