Matching Items (6)
Filtering by

Clear all filters

151588-Thumbnail Image.png
Description
This work is an assemblage of three applied projects that address the institutional and spatial constraints to managing threatened and endangered (T & E) terrestrial species. The first project looks at the role of the Endangered Species Act (ESA) in protecting wildlife and whether banning non–conservation activities on multi-use federal

This work is an assemblage of three applied projects that address the institutional and spatial constraints to managing threatened and endangered (T & E) terrestrial species. The first project looks at the role of the Endangered Species Act (ESA) in protecting wildlife and whether banning non–conservation activities on multi-use federal lands is socially optimal. A bioeconomic model is used to identify scenarios where ESA–imposed regulations emerge as optimal strategies and to facilitate discussion on feasible long–term strategies in light of the ongoing public land–use debate. Results suggest that banning harmful activities is a preferred strategy when valued species are in decline or exposed to poor habitat quality. However such a strategy cannot be sustained in perpetuity, a switch to land–use practices characteristic of habitat conservation plans is recommended. The spatial portion of this study is motivated by the need for a more systematic quantification and assessment of landscape structure ahead of species reintroduction; this portion is further broken up into two parts. The first explores how connectivity between habitat patches promotes coexistence among multiple interacting species. An agent–based model of a two–patch metapopulation is developed with local predator–prey dynamics and density–dependent dispersal. The simulation experiment suggests that connectivity levels at both extremes, representing very little risk and high risk of species mortality, do not augment the likelihood of coexistence while intermediate levels do. Furthermore, the probability of coexistence increases and spans a wide range of connectivity levels when individual dispersal is less probabilistic and more dependent on population feedback. Second, a novel approach to quantifying network structure is developed using the statistical method of moments. This measurement framework is then used to index habitat networks and assess their capacity to drive three main ecological processes: dispersal, survival, and coexistence. Results indicate that the moments approach outperforms single summary metrics and accounts for a majority of the variation in process outcomes. The hierarchical measurement scheme is helpful for indicating when additional structural information is needed to determine ecological function. However, the qualitative trend between network indicator and function is, at times, unintuitive and unstable in certain areas of the metric space.
ContributorsSalau, Kehinde Rilwan, 1985- (Author) / Janssen, Marco A (Thesis advisor) / Fenichel, Eli P (Thesis advisor) / Anderies, John M (Committee member) / Abbott, Joshua K (Committee member) / Arizona State University (Publisher)
Created2013
151042-Thumbnail Image.png
Description
Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate

Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate change and urban development on vegetation distribution in a Mediterranean-type ecosystem; to identify the primary source of uncertainty in suitable habitat predictions; and to evaluate how well conservation areas protect future habitat in the Southwest ecoregion of the California Floristic Province. I used a consensus-based modeling approach combining three different species distribution models to predict current and future suitable habitat for 19 plant species representing different plant functional types (PFT) defined by fire-response (obligate seeders, resprouting shrubs), and life forms (herbs, subshurbs). I also examined the response of species grouped by range sizes (large, small). I used two climate models, two emission scenarios, two thresholds, and high-resolution (90m resolution) environmental data to create a range of potential scenarios. I evaluated the effectiveness of an existing conservation network to protect suitable habitat for rare species in light of climate and land use change. The results indicate that the area of suitable habitat for each species varied depending on the climate model, emission scenario, and threshold combination. The suitable habitat for up to four species could disappear from the ecoregion, while suitable habitat for up to 15 other species could decrease under climate change conditions. The centroid of the species' suitable environmental conditions could shift up to 440 km. Large net gains in suitable habitat were predicted for a few species. The suitable habitat area for herbs has a small response to climate change, while obligate seeders could be the most affected PFT. The results indicate that the other two PFTs gain a considerable amount of suitable habitat area. Several rare species could lose suitable habitat area inside designated conservation areas while gaining suitable habitat area outside. Climate change is predicted to be more important than urban development as a driver of habitat loss for vegetation in this region in the coming century. These results indicate that regional analyses of this type are useful and necessary to understand the dynamics of drivers of change at the regional scale and to inform decision making at this scale.
ContributorsBeltrán Villarreal, Bray de Jesús (Author) / Franklin, Janet (Thesis advisor) / Fenichel, Eli P (Committee member) / Kinzig, Ann P (Committee member) / Collins, James P. (Committee member) / Arizona State University (Publisher)
Created2012
151119-Thumbnail Image.png
Description
The spread of invasive species may be greatly affected by human responses to prior species spread, but models and estimation methods seldom explicitly consider human responses. I investigate the effects of management responses on estimates of invasive species spread rates. To do this, I create an agent-based simulation model of

The spread of invasive species may be greatly affected by human responses to prior species spread, but models and estimation methods seldom explicitly consider human responses. I investigate the effects of management responses on estimates of invasive species spread rates. To do this, I create an agent-based simulation model of an insect invasion across a county-level citrus landscape. My model provides an approximation of a complex spatial environment while allowing the "truth" to be known. The modeled environment consists of citrus orchards with insect pests dispersing among them. Insects move across the simulation environment infesting orchards, while orchard managers respond by administering insecticide according to analyst-selected behavior profiles and management responses may depend on prior invasion states. Dispersal data is generated in each simulation and used to calculate spread rate via a set of estimators selected for their predominance in the empirical literature. Spread rate is a mechanistic, emergent phenomenon measured at the population level caused by a suite of latent biological, environmental, and anthropogenic. I test the effectiveness of orchard behavior profiles on invasion suppression and evaluate the robustness of the estimators given orchard responses. I find that allowing growers to use future expectations of spread in management decisions leads to reduced spread rates. Acting in a preventative manner by applying insecticide before insects are actually present, orchards are able to lower spread rates more than by reactive behavior alone. Spread rates are highly sensitive to spatial configuration. Spatial configuration is hardly a random process, consisting of many latent factors often not accounted for in spread rate estimation. Not considering these factors may lead to an omitted variables bias and skew estimation results. The ability of spread rate estimators to predict future spread varies considerably between estimators, and with spatial configuration, invader biological parameters, and orchard behavior profile. The model suggests that understanding the latent factors inherent to dispersal is important for selecting phenomenological models of spread and interpreting estimation results. This indicates a need for caution when evaluating spread. Although standard practice, current empirical estimators may both over- and underestimate spread rate in the simulation.
ContributorsShanafelt, David William (Author) / Fenichel, Eli P (Thesis advisor) / Richards, Timothy (Committee member) / Janssen, Marco (Committee member) / Arizona State University (Publisher)
Created2012
149521-Thumbnail Image.png
Description

More than half of all accessible freshwater has been appropriated for human use, and a substantial portion of terrestrial ecosystems have been transformed by human action. These impacts are heaviest in urban ecosystems, where impervious surfaces increase runoff, water delivery and stormflows are managed heavily, and there are substantial anthropogenic

More than half of all accessible freshwater has been appropriated for human use, and a substantial portion of terrestrial ecosystems have been transformed by human action. These impacts are heaviest in urban ecosystems, where impervious surfaces increase runoff, water delivery and stormflows are managed heavily, and there are substantial anthropogenic sources of nitrogen (N). Urbanization also frequently results in creation of intentional novel ecosystems. These "designed" ecosystems are fashioned to fulfill particular needs of the residents, or ecosystem services. In the Phoenix, Arizona area, the augmentation and redistribution of water has resulted in numerous component ecosystems that are atypical for a desert environment. Because these systems combine N loading with the presence of water, they may be hot spots of biogeochemical activity. The research presented here illustrates the types of hydrological modifications typical of desert cities and documents the extent and distribution of common designed aquatic ecosystems in the Phoenix metropolitan area: artificial lakes and stormwater retention basins. While both ecosystems were designed for other purposes (recreation/aesthetics and flood abatement, respectively), they have the potential to provide the added ecosystem service of N removal via denitrification. However, denitrification in urban lakes is likely to be limited by the rate of diffusion of nitrate into the sediment. Retention basins export some nitrate to groundwater, but grassy basins have higher denitrification rates than xeriscaped ones, due to higher soil moisture and organic matter content. An economic valuation of environmental amenities demonstrates the importance of abundant vegetation, proximity to water, and lower summer temperatures throughout the region. These amenities all may be provided by designed, water-intensive ecosystems. Some ecosystems are specifically designed for multiple uses, but maximizing one ecosystem service often entails trade-offs with other services. Further investigation into the distribution, bundling, and tradeoffs among water-related ecosystem services shows that some types of services are constrained by the hydrogeomorphology of the area, while for others human engineering and the creation of designed ecosystems has enabled the delivery of hydrologic ecosystem services independent of natural constraints.

ContributorsLarson, Elisabeth Knight (Author) / Grimm, Nancy (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Fisher, Stuart G. (Committee member) / Anderies, John M (Committee member) / Lohse, Kathleen A (Committee member) / Arizona State University (Publisher)
Created2010
171611-Thumbnail Image.png
Description
There is a need in the ecology literature to have a discussion about the fundamental theories from which population dynamics arises. Ad hoc model development is not uncommon in the field often as a result of a need to publish rapidly and frequently. Ecologists and statisticians like Robert J. Steidl

There is a need in the ecology literature to have a discussion about the fundamental theories from which population dynamics arises. Ad hoc model development is not uncommon in the field often as a result of a need to publish rapidly and frequently. Ecologists and statisticians like Robert J. Steidl and Kenneth P Burnham have called for a more deliberative approach they call "hard thinking". For example, the phenomena of population growth can be captured by almost any sigmoid function. The question of which sigmoid function best explains a data set cannot be answered meaningfully by statistical regression since that can only speak to the validity of the shape. There is a need to revisit enzyme kinetics and ecological stoichiometry to properly justify basal model selection in ecology. This dissertation derives several common population growth models from a generalized equation. The mechanistic validity of these models in different contexts is explored through a kinetic lens. The behavioral kinetic framework is then put to the test by examining a set of biologically plausible growth models against the 1968-1995 elk population count data for northern Yellowstone. Using only this count data, the novel Monod-Holling growth model was able to accurately predict minimum viable population and life expectancy despite both being exogenous to the model and data set. Lastly, the elk/wolf data from Yellowstone was used to compare the validity of the Rosenzweig-MacArthur and Arditi-Ginzburg models. They both were derived from a more general model which included both predator and prey mediated steps. The Arditi-Ginzburg model was able to fit the training data better, but only the Rosenzweig-MacArthur model matched the validation data. Accounting for animal sexual behavior allowed for the creation of the Monod-Holling model which is just as simple as the logistic differential equation but provides greater insights for conservation purposes. Explicitly acknowledging the ethology of wolf predation helps explain the differences in predictive performances by the best fit Rosenzweig-MacArthur and Arditi-Ginzburg models. The behavioral kinetic framework has proven to be a useful tool, and it has the ability to provide even further insights going forward.
ContributorsPringle, Jack Andrew McCracken (Author) / Anderies, John M (Thesis advisor) / Kuang, Yang (Committee member) / Milner, Fabio (Committee member) / Arizona State University (Publisher)
Created2022
154161-Thumbnail Image.png
Description
Often, when thinking of cities we envision designed landscapes, where people regulate everything from water to weeds, ultimately resulting in an ecosystem decoupled from biophysical processes. It is unclear, however, what happens when the people regulating these extensively managed landscapes come under stress, whether from unexpected economic fluctuations or from

Often, when thinking of cities we envision designed landscapes, where people regulate everything from water to weeds, ultimately resulting in an ecosystem decoupled from biophysical processes. It is unclear, however, what happens when the people regulating these extensively managed landscapes come under stress, whether from unexpected economic fluctuations or from changing climate norms. The overarching question of my dissertation research was: How does urban vegetation change in response to human behavior? To answer this question, I conducted multiscale research in an arid urban ecosystem as well as in a virtual desert city. I used a combination of long-term data and agent-based modeling to examine changes in vegetation across a range of measures influenced by biophysical, climate, institutional, and socioeconomic drivers. At the regional scale, total plant species diversity increased from 2000 to 2010, while species composition became increasingly homogeneous in urban and agricultural areas. At the residential scale, I investigated the effects of biophysical and socioeconomic drivers – the Great Recession of 2007-2010 in particular – on changing residential yard vegetation in Phoenix, AZ. Socioeconomic drivers affected plant composition and increasing richness, but the housing boom from 2000 through 2005 had a stronger influence on vegetation change than the subsequent recession. Surprisingly, annual plant species remained coupled to winter precipitation despite my expectation that their dynamics might be driven by socioeconomic fluctuations. In a modeling experiment, I examined the relative strength of psychological, social, and governance influences on large-scale urban land cover in a desert city. Model results suggested that social norms may be strong enough to lead to large-scale conversion to low water use residential landscaping, and governance may be unnecessary to catalyze residential landscape conversion under the pressure of extreme drought conditions. Overall, my dissertation research showed that urban vegetation is dynamic, even under the presumably stabilizing influence of human management activities. Increasing climate pressure, unexpected socioeconomic disturbances, growing urban populations, and shifting policies all contribute to urban vegetation dynamics. Incorporating these findings into planning policies will contribute to the sustainable management of urban ecosystems.
ContributorsRipplinger, Julie (Author) / Franklin, Janet (Thesis advisor) / Collins, Scott L. (Thesis advisor) / Anderies, John M (Committee member) / Childers, Daniel L. (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2015