Matching Items (2)
Filtering by

Clear all filters

161463-Thumbnail Image.png
Description
Serious or educational games have been a subject of research for a long time. They usually have game mechanics, game content, and content assessment all tied together to make a specialized game intended to impart learning of the associated content to its players. While this approach is good for developing

Serious or educational games have been a subject of research for a long time. They usually have game mechanics, game content, and content assessment all tied together to make a specialized game intended to impart learning of the associated content to its players. While this approach is good for developing games for teaching highly specific topics, it consumes a lot of time and money. Being able to re-use the same mechanics and assessment for creating games that teach different contents would lead to a lot of savings in terms of time and money. The Content Agnostic Game Engineering (CAGE) Architecture mitigates the problem by disengaging the content from game mechanics. Moreover, the content assessment in games is often quite explicit in the way that it disturbs the flow of the players and thus hampers the learning process, as it is not integrated into the game flow. Stealth assessment helps to alleviate this problem by keeping the player engagement intact while assessing them at the same time. Integrating stealth assessment into the CAGE framework in a content-agnostic way will increase its usability and further decrease in game and assessment development time and cost. This research presents an evaluation of the learning outcomes in content-agnostic game-based assessment developed using the CAGE framework.
ContributorsVerma, Vipin (Author) / Craig, Scotty D (Thesis advisor) / Bansal, Ajay (Thesis advisor) / Amresh, Ashish (Committee member) / Baron, Tyler (Committee member) / Levy, Roy (Committee member) / Arizona State University (Publisher)
Created2021
165147-Thumbnail Image.png
Description

Artificial intelligence is one of the biggest topics being discussed in the realm of Computer Science and it has made incredible breakthroughs possible in so many different industries. One of the largest issues with utilizing computational resources in the health industry historically is centered around the quantity of data, the

Artificial intelligence is one of the biggest topics being discussed in the realm of Computer Science and it has made incredible breakthroughs possible in so many different industries. One of the largest issues with utilizing computational resources in the health industry historically is centered around the quantity of data, the specificity of conditions for accurate results, and the general risks associated with being incorrect in an analysis. Although these all have been major issues in the past, the application of artificial intelligence has opened up an entirely different realm of possibilities because accessing massive amounts of patient data, is essential for generating an extremely accurate model in machine learning. The goal of this project is to analyze tools and algorithm design techniques used in recent times to accelerate data processing in the realm of healthcare, but one of the most important discoveries is that the standardization of conditioned data being fed into the models is almost more important than the algorithms or tools being used combined.

ContributorsJanes, Jacob (Author) / Bansal, Ajay (Thesis director) / Baron, Tyler (Committee member) / Barrett, The Honors College (Contributor) / Software Engineering (Contributor)
Created2022-05