Matching Items (4)
Filtering by

Clear all filters

150987-Thumbnail Image.png
Description
In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned

In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned and operated by third-party service providers, there are risks of unauthorized use of the users' sensitive data by service providers. Although there are many techniques for protecting users' data from outside attackers, currently there is no effective way to protect users' sensitive data from service providers. In this dissertation, an approach is presented to protecting the confidentiality of users' data from service providers, and ensuring that service providers cannot collect users' confidential data while the data is processed or stored in cloud computing systems. The approach has four major features: (1) separation of software service providers and infrastructure service providers, (2) hiding the information of the owners of data, (3) data obfuscation, and (4) software module decomposition and distributed execution. Since the approach to protecting users' data confidentiality includes software module decomposition and distributed execution, it is very important to effectively allocate the resource of servers in SBS to each of the software module to manage the overall performance of workflows in SBS. An approach is presented to resource allocation for SBS to adaptively allocating the system resources of servers to their software modules in runtime in order to satisfy the performance requirements of multiple workflows in SBS. Experimental results show that the dynamic resource allocation approach can substantially increase the throughput of a SBS and the optimal resource allocation can be found in polynomial time
ContributorsAn, Ho Geun (Author) / Yau, Sik-Sang (Thesis advisor) / Huang, Dijiang (Committee member) / Ahn, Gail-Joon (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2012
136604-Thumbnail Image.png
Description
As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has

As technology's influence pushes every industry to change, healthcare professionals must move to a more connected model. The nearly ubiquitous presence of smartphones presents a unique opportunity for physicians to collect and process data from their patients more frequently. The Mayo Clinic, in partnership with the Barrett Honors College, has designed and developed a prototype smartphone application targeting palliative care patients. The application collects symptom data from the patients and presents it to the doctors. This development project serves as a proof-of-concept for the application, and shows how such an application might look and function. Additionally, the project has revealed significant possibilities for the future of the application.
ContributorsGaney, David Howard (Author) / Balasooriya, Janaka (Thesis director) / Lipinski, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136572-Thumbnail Image.png
Description
Cloud computing and web services enable the creation of applications that are faster and more interconnected than traditional applications. This project explores the possible ways in which cloud computing and web services can be used to extend already existing applications by developing a data storage web service for 3D modeling

Cloud computing and web services enable the creation of applications that are faster and more interconnected than traditional applications. This project explores the possible ways in which cloud computing and web services can be used to extend already existing applications by developing a data storage web service for 3D modeling applications. The implementation of the service is described, and several example applications are shown that utilize the service. Additionally, related web based applications are discussed along with their influence on the project. The project shows the benefits that cloud-based web services can bring to 3D modeling applications, such as improved collaboration and more comprehensive history tracking.
ContributorsFerry, Mark Travis (Author) / Chen, Yinong (Thesis director) / Balasooriya, Janaka (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
135938-Thumbnail Image.png
Description
Palliative care is a field that serves to benefit enormously from the introduction of mobile medical applications. Doctors at the Mayo Clinic intend to address a reoccurring dilemma, in which palliative care patients visit the emergency room during situations that are not urgent or life-threatening. Doing so unnecessarily

Palliative care is a field that serves to benefit enormously from the introduction of mobile medical applications. Doctors at the Mayo Clinic intend to address a reoccurring dilemma, in which palliative care patients visit the emergency room during situations that are not urgent or life-threatening. Doing so unnecessarily drains the hospital’s resources, and it prevents the patient’s physician from applying specialized care that would better suit the patient’s individual needs. This scenario is detrimental to all involved. A mobile medical application seeks to foster doctor-patient communication while simultaneously decreasing the frequency of these excessive E.R. visits. In order to provide a sufficient standard of usefulness and convenience, the design of such a mobile application must be tailored to accommodate the needs of palliative care patients. Palliative care is focused on establishing long-term comfort for people who are often terminally-ill, elderly, handicapped, or otherwise severely disadvantaged. Therefore, a UI intended for palliative care patients must be devoted to simplicity and ease of use. The application must also be robust enough that the user feels that they have been provided with enough capabilities. The majority of this paper is dedicated to overhauling an existing palliative care application, the product of a previous honors thesis project, and implementing a user interface that establishes a simple, positive, and advantageous environment. This is accomplished through techniques such as color-coding, optimizing page layout, increasing customization capabilities, and more. Above all else, this user interface is intended to make the patient’s experience satisfying and trouble-free. They should be able to log in, navigate the application’s features with a few taps of their finger, and log out — all without undergoing any frustration or difficulties.
ContributorsWilkes, Jarrett Matthew (Co-author) / Ganey, David (Co-author) / Dao, Lelan (Co-author) / Balasooriya, Janaka (Thesis director) / Faucon, Christophe (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12