Matching Items (3)
Filtering by

Clear all filters

Description
The study aims to develop and evaluate failure prediction models that accurately predict crack initiation sites, fatigue life in additively manufactured Ti-6Al-4V, and burst pressure in relevant applications.The first part proposes a classification model to identify crack initiation sites in AM-built Ti-6Al-4V alloy. The model utilizes surface and pore-related parameters

The study aims to develop and evaluate failure prediction models that accurately predict crack initiation sites, fatigue life in additively manufactured Ti-6Al-4V, and burst pressure in relevant applications.The first part proposes a classification model to identify crack initiation sites in AM-built Ti-6Al-4V alloy. The model utilizes surface and pore-related parameters and achieves high accuracy (0.97) and robustness (F1 score of 0.98). Leveraging CT images for characterization and data extraction from the CT-images built STL files, the model effectively detects crack initiation sites while minimizing false positives and negatives. Data augmentation techniques, including SMOTE+Tomek Links, are employed to address imbalanced data distributions and improve model performance. This study proposes the Probabilistic Physics-guided Neural Network 2.0 (PPgNN) for probabilistic fatigue life estimation. The presented approach overcomes the limitations of classical regression machine models commonly used to analyze fatigue data. One key advantage of the proposed method is incorporating known physics constraints, resulting in accurate and physically consistent predictions. The efficacy of the model is demonstrated by training the model with multiple fatigue S-N curve data sets from open literature with relevant morphological data and tested using the data extracted from CT-built STL files. The results illustrate that PPgNN 2.0 is a flexible and robust model for predicting fatigue life and quantifying uncertainties by estimating the mean and standard deviation of the fatigue life. The loss function that trains the proposed model can capture the underlying distribution and reduce the prediction error. A comparison study between the performance of neural network models highlights the benefits of physics-guided learning for fatigue data analysis. The proposed model demonstrates satisfactory learning capacity and generalization, providing accurate fatigue life predictions to unseen examples. An elastic-plastic Finite Element Model (FEM) is developed in the second part to assess pipeline integrity, focusing on burst pressure estimation in high-pressure gas pipelines with interactive corrosion defects. The FEM accurately predicts burst pressure and evaluates the remaining useful life by considering the interaction between corrosion defects and neighboring pits. The FEM outperforms the well-known ASME-B31G method in handling interactive corrosion threats.
ContributorsBalamurugan, Rakesh (Author) / Liu, Yongming (Thesis advisor) / Zhuang, Houlong (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2023
161371-Thumbnail Image.png
Description
A skin lesion is a part of the skin which has an uncommon growth or appearance in comparison with the skin around it. While most are harmless, some can be warnings of skin cancer. Melanoma is the deadliest form of skin cancer and its early detection in dermoscopic images is

A skin lesion is a part of the skin which has an uncommon growth or appearance in comparison with the skin around it. While most are harmless, some can be warnings of skin cancer. Melanoma is the deadliest form of skin cancer and its early detection in dermoscopic images is crucial and results in increase in the survival rate. The clinical ABCD (asymmetry, border irregularity, color variation and diameter greater than 6mm) rule is one of the most widely used method for early melanoma recognition. However, accurate classification of melanoma is still extremely difficult due to following reasons(not limited to): great visual resemblance between melanoma and non-melanoma skin lesions, less contrast difference between skin and the lesions etc. There is an ever-growing need of correct and reliable detection of skin cancers. Advances in the field of deep learning deems it perfect for the task of automatic detection and is very useful to pathologists as they aid them in terms of efficiency and accuracy. In this thesis various state of the art deep learning frameworks are used. An analysis of their parameters is done, innovative techniques are implemented to address the challenges faced in the tasks, segmentation, and classification in skin lesions.• Segmentation is task of dividing out regions of interest. This is used to only keep the ROI and separate it from its background. • Classification is the task of assigning the image a class, i.e., Melanoma(Cancer) and Nevus(Not Cancer). A pre-trained model is used and fine-tuned as per the needs of the given problem statement/dataset. Experimental results show promise as the implemented techniques reduce the false negatives rate, i.e., neural network is less likely to misclassify a melanoma.
ContributorsVerma, Vivek (Author) / Motsch, Sebastien (Thesis advisor) / Berman, Spring (Thesis advisor) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021
168519-Thumbnail Image.png
Description
This research seeks to answer the question if there is a singular relationship between stishovite nucleation and the atomistic structure of the preshocked amorphous SiO$_2$. To do this a stishovite manufacturing method is developed in which 1,152 samples were produced. The majority of these samples did crystallize. The method was

This research seeks to answer the question if there is a singular relationship between stishovite nucleation and the atomistic structure of the preshocked amorphous SiO$_2$. To do this a stishovite manufacturing method is developed in which 1,152 samples were produced. The majority of these samples did crystallize. The method was produced through two rounds of experiments and fine-tuning with the pressure damp, temperature damp, shock pressure using an NPHug fix, and sample origin. A new random atomic insertion method was used to generate a new and different SiO$_2$ amorphous structure not before seen within the research literature. The optimal values for shock were found to be 60~GPa for randomly atom insertion samples and 55~GPa for quartz origin samples. Temperature damp appeared to have a slight effect optimizing at 0.05~ps and the pressure damp had no visible effect, testing was done with temperature damp from 0.05 to 0.5~ps and pressure damp from 0.1 to 10.0~ps. There appeared to be significant randomness in crystallization behavior. The preshocked and postnucleated samples were transformed into Gaussian fields of crystal, mass, and charge. These fields were divided and classified using a cut-off method taking the number of crystals produced in portions of each simulation and classifying each potion as nucleated or non-nucleated. Data in which some nucleation but not a critical amount was present was removed constituting 2.6\% to 20.3\% of data in all tests. A max method was also used which takes only the maximum portions of each simulation to classify as nucleating. There are three other variables tested within this work, a sample size of 18,000 or 72,728~atoms, Gaussian variance of 1 or 4~\AA, and Convolutional neural network (CNN) architecture of a garden verity or all convolution along with the portioning classification method, sample origination, and Gaussian field type. In total 64 tests were performed to try every combination of variable. No significant classifications were made by the CNNs to nucleation or non-nucleation portions. The results clearly confirmed that the data was not abstracting to atomistic structure and was random by all classifications of the CNNs. The all convolution CNN testing did show smoother outcomes in training with less fluctuations. 59\% of all validation accuracy was held at 0.5 for a random state and 84\% was within $\pm0.02$ of 0.5. It is conclusive that prenucleation structure is not the sole predictor of nucleation behavior. It is not conclusive if prenucleation structure is a partial or non-factor within nucleation of stishovite from amorphous SiO$_2$.
ContributorsChristen, Jonathan Scorr (Author) / Oswald, Jay (Thesis advisor) / Muhich, Christopher (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021