Matching Items (71)
Filtering by

Clear all filters

151793-Thumbnail Image.png
Description
Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to

Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to create high level motion plans to control robots in the field by converting a visual representation of the motion/task plan into a Linear Temporal Logic (LTL) specification. The visual interface is built on the Android tablet platform and provides functionality to create task plans through a set of well defined gestures and on screen controls. It uses the notion of waypoints to quickly and efficiently describe the motion plan and enables a variety of complex Linear Temporal Logic specifications to be described succinctly and intuitively by the user without the need for the knowledge and understanding of LTL specification. Thus, it opens avenues for its use by personnel in military, warehouse management, and search and rescue missions. This thesis describes the construction of LTL for various scenarios used for robot navigation using the visual interface developed and leverages the use of existing LTL based motion planners to carry out the task plan by a robot.
ContributorsSrinivas, Shashank (Author) / Fainekos, Georgios (Thesis advisor) / Baral, Chitta (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2013
151653-Thumbnail Image.png
Description
Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling

Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling language in order to enhance expressivity, such as incorporating aggregates and interfaces with ontologies. Also, in order to overcome the grounding bottleneck of computation in ASP, there are increasing interests in integrating ASP with other computing paradigms, such as Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). Due to the non-monotonic nature of the ASP semantics, such enhancements turned out to be non-trivial and the existing extensions are not fully satisfactory. We observe that one main reason for the difficulties rooted in the propositional semantics of ASP, which is limited in handling first-order constructs (such as aggregates and ontologies) and functions (such as constraint variables in CP and SMT) in natural ways. This dissertation presents a unifying view on these extensions by viewing them as instances of formulas with generalized quantifiers and intensional functions. We extend the first-order stable model semantics by by Ferraris, Lee, and Lifschitz to allow generalized quantifiers, which cover aggregate, DL-atoms, constraints and SMT theory atoms as special cases. Using this unifying framework, we study and relate different extensions of ASP. We also present a tight integration of ASP with SMT, based on which we enhance action language C+ to handle reasoning about continuous changes. Our framework yields a systematic approach to study and extend non-monotonic languages.
ContributorsMeng, Yunsong (Author) / Lee, Joohyung (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Fainekos, Georgios (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2013
151780-Thumbnail Image.png
Description
Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona State University. The end product of this thesis is creation

Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona State University. The end product of this thesis is creation of a software solution which can be used in the academia and industry for research in cyber physical systems related applications. The major features of the project are: creating a modular system for motion planning, use of Robot Operating System (ROS), use of triangulation for environment decomposition and using stargazer sensor for localization. The project is built on an open source software called ROS which provides an environment where it is very easy to integrate different modules be it software or hardware on a Linux based platform. Use of ROS implies the project or its modules can be adapted quickly for different applications as the need arises. The final software package created and tested takes a data file as its input which contains the LTL specifications, a symbols list used in the LTL and finally the environment polygon data containing real world coordinates for all polygons and also information on neighbors and parents of each polygon. The software package successfully ran the experiment of coverage, reachability with avoidance and sequencing.
ContributorsPandya, Parth (Author) / Fainekos, Georgios (Thesis advisor) / Dasgupta, Partha (Committee member) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2013
149452-Thumbnail Image.png
Description
Cyber Physical Systems (CPSs) are systems comprising of computational systems that interact with the physical world to perform sensing, communication, computation and actuation. Common examples of these systems include Body Area Networks (BANs), Autonomous Vehicles (AVs), Power Distribution Systems etc. The close coupling between cyber and physical worlds in a

Cyber Physical Systems (CPSs) are systems comprising of computational systems that interact with the physical world to perform sensing, communication, computation and actuation. Common examples of these systems include Body Area Networks (BANs), Autonomous Vehicles (AVs), Power Distribution Systems etc. The close coupling between cyber and physical worlds in a CPS manifests in two types of interactions between computing systems and the physical world: intentional and unintentional. Unintentional interactions result from the physical characteristics of the computing systems and often cause harm to the physical world, if the computing nodes are close to each other, these interactions may overlap thereby increasing the chances of causing a Safety hazard. Similarly, due to mobile nature of computing nodes in a CPS planned and unplanned interactions with the physical world occur. These interactions represent the behavior of a computing node while it is following a planned path and during faulty operations. Both of these interactions change over time due to the dynamics (motion) of the computing node and may overlap thereby causing harm to the physical world. Lack of proper modeling and analysis frameworks for these systems causes system designers to use ad-hoc techniques thereby further increasing their design and development time. The thesis addresses these problems by taking a holistic approach to model Computational, Physical and Cyber Physical Interactions (CPIs) aspects of a CPS and proposes modeling constructs for them. These constructs are analyzed using a safety analysis algorithm developed as part of the thesis. The algorithm computes the intersection of CPIs for both mobile as well as static computing nodes and determines the safety of the physical system. A framework is developed by extending AADL to support these modeling constructs; the safety analysis algorithm is implemented as OSATE plug-in. The applicability of the proposed approach is demonstrated by considering the safety of human tissue during the operations of BAN, and the safety of passengers traveling in an Autonomous Vehicle.
ContributorsKandula, Sailesh Umamaheswara (Author) / Gupta, Sandeep (Thesis advisor) / Lee, Yann Hang (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2010
132967-Thumbnail Image.png
Description
Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that,

Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that, given an abstract problem state, predicts both (i) the best action to be taken from that state and (ii) the generalized “role” of the object being manipulated. The neural network was tested on two classical planning domains: the blocks world domain and the logistic domain. Results indicate that neural networks are capable of making such
predictions with high accuracy, indicating a promising new framework for approaching generalized planning problems.
ContributorsNakhleh, Julia Blair (Author) / Srivastava, Siddharth (Thesis director) / Fainekos, Georgios (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132117-Thumbnail Image.png
Description
91% of smartphone and tablet users experience a problem with their device screen being oriented the wrong way during use [11]. In [11], the authors proposed iRotate, a previous solution which uses computer vision to solve the orientation problem. We propose iLieDown, an improved method of automatically rotating smartphones, tablets,

91% of smartphone and tablet users experience a problem with their device screen being oriented the wrong way during use [11]. In [11], the authors proposed iRotate, a previous solution which uses computer vision to solve the orientation problem. We propose iLieDown, an improved method of automatically rotating smartphones, tablets, and other device displays. This paper introduces a new algorithm to correctly orient the display relative to the user’s face using a convolutional neural network (CNN). The CNN model is trained to predict the rotation of faces in various environments through data augmentation, uses a confidence threshold, and analyzes multiple images to be accurate and robust. iLieDown is battery and CPU efficient, causes no noticeable lag to the user during use, and is 6x more accurate than iRotate.
ContributorsTallman, Riley Paul (Author) / Yang, Yezhou (Thesis director) / Fang, Zhiyuan (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
133211-Thumbnail Image.png
Description
This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term

This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term memory. To address this problem, we proposed that using a Neural Turing Machine (NTM) framework adds long-term memory to the system. We evaluated this approach by using it to master a palindrome task. The network was able to infer how to create a palindrome with 100% accuracy. Since the NTM structure proves useful, we aim to use it in the given scenarios to improve the navigation safety and accuracy of a simulated autonomous car.
ContributorsMartin, Sarah (Author) / Ben Amor, Hani (Thesis director) / Fainekos, Georgios (Committee member) / Barrett, The Honors College (Contributor)
Created2018-05
157623-Thumbnail Image.png
Description
Feature embeddings differ from raw features in the sense that the former obey certain properties like notion of similarity/dissimilarity in it's embedding space. word2vec is a preeminent example in this direction, where the similarity in the embedding space is measured in terms of the cosine similarity. Such language embedding models

Feature embeddings differ from raw features in the sense that the former obey certain properties like notion of similarity/dissimilarity in it's embedding space. word2vec is a preeminent example in this direction, where the similarity in the embedding space is measured in terms of the cosine similarity. Such language embedding models have seen numerous applications in both language and vision community as they capture the information in the modality (English language) efficiently. Inspired by these language models, this work focuses on learning embedding spaces for two visual computing tasks, 1. Image Hashing 2. Zero Shot Learning. The training set was used to learn embedding spaces over which similarity/dissimilarity is measured using several distance metrics like hamming / euclidean / cosine distances. While the above-mentioned language models learn generic word embeddings, in this work task specific embeddings were learnt which can be used for Image Retrieval and Classification separately.

Image Hashing is the task of mapping images to binary codes such that some notion of user-defined similarity is preserved. The first part of this work focuses on designing a new framework that uses the hash-tags associated with web images to learn the binary codes. Such codes can be used in several applications like Image Retrieval and Image Classification. Further, this framework requires no labelled data, leaving it very inexpensive. Results show that the proposed approach surpasses the state-of-art approaches by a significant margin.

Zero-shot classification is the task of classifying the test sample into a new class which was not seen during training. This is possible by establishing a relationship between the training and the testing classes using auxiliary information. In the second part of this thesis, a framework is designed that trains using the handcrafted attribute vectors and word vectors but doesn’t require the expensive attribute vectors during test time. More specifically, an intermediate space is learnt between the word vector space and the image feature space using the hand-crafted attribute vectors. Preliminary results on two zero-shot classification datasets show that this is a promising direction to explore.
ContributorsGattupalli, Jaya Vijetha (Author) / Li, Baoxin (Thesis advisor) / Yang, Yezhou (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2019
161939-Thumbnail Image.png
Description
Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination of simpler behaviors. It is tempting to apply similar idea such that simpler behaviors can be combined in a meaningful way to tailor the complex combination. Such an approach would enable faster learning and modular design of behaviors. Complex behaviors can be combined with other behaviors to create even more advanced behaviors resulting in a rich set of possibilities. Similar to RL, combined behavior can keep evolving by interacting with the environment. The requirement of this method is to specify a reasonable set of simple behaviors. In this research, I present an algorithm that aims at combining behavior such that the resulting behavior has characteristics of each individual behavior. This approach has been inspired by behavior based robotics, such as the subsumption architecture and motor schema-based design. The combination algorithm outputs n weights to combine behaviors linearly. The weights are state dependent and change dynamically at every step in an episode. This idea is tested on discrete and continuous environments like OpenAI’s “Lunar Lander” and “Biped Walker”. Results are compared with related domains like Multi-objective RL, Hierarchical RL, Transfer learning, and basic RL. It is observed that the combination of behaviors is a novel way of learning which helps the agent achieve required characteristics. A combination is learned for a given state and so the agent is able to learn faster in an efficient manner compared to other similar approaches. Agent beautifully demonstrates characteristics of multiple behaviors which helps the agent to learn and adapt to the environment. Future directions are also suggested as possible extensions to this research.
ContributorsVora, Kevin Jatin (Author) / Zhang, Yu (Thesis advisor) / Yang, Yezhou (Committee member) / Praharaj, Sarbeswar (Committee member) / Arizona State University (Publisher)
Created2021
161967-Thumbnail Image.png
Description
Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to

Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to force models to avoid being exposed to biases. However, the filtering leads to a considerable wastage of resources as most of the dataset created is discarded as biased. This work deals with avoiding the wastage of resources by identifying and quantifying the biases. I further elaborate on the implications of dataset filtering on robustness (to adversarial attacks) and generalization (to out-of-distribution samples). The findings suggest that while dataset filtering does help to improve OOD(Out-Of-Distribution) generalization, it has a significant negative impact on robustness to adversarial attacks. It also shows that transforming bias-inducing samples into adversarial samples (instead of eliminating them from the dataset) can significantly boost robustness without sacrificing generalization.
ContributorsSachdeva, Bhavdeep Singh (Author) / Baral, Chitta (Thesis advisor) / Liu, Huan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021