Matching Items (14)
Filtering by

Clear all filters

190708-Thumbnail Image.png
Description
Generative models are deep neural network-based models trained to learn the underlying distribution of a dataset. Once trained, these models can be used to sample novel data points from this distribution. Their impressive capabilities have been manifested in various generative tasks, encompassing areas like image-to-image translation, style transfer, image editing,

Generative models are deep neural network-based models trained to learn the underlying distribution of a dataset. Once trained, these models can be used to sample novel data points from this distribution. Their impressive capabilities have been manifested in various generative tasks, encompassing areas like image-to-image translation, style transfer, image editing, and more. One notable application of generative models is data augmentation, aimed at expanding and diversifying the training dataset to augment the performance of deep learning models for a downstream task. Generative models can be used to create new samples similar to the original data but with different variations and properties that are difficult to capture with traditional data augmentation techniques. However, the quality, diversity, and controllability of the shape and structure of the generated samples from these models are often directly proportional to the size and diversity of the training dataset. A more extensive and diverse training dataset allows the generative model to capture overall structures present in the data and generate more diverse and realistic-looking samples. In this dissertation, I present innovative methods designed to enhance the robustness and controllability of generative models, drawing upon physics-based, probabilistic, and geometric techniques. These methods help improve the generalization and controllability of the generative model without necessarily relying on large training datasets. I enhance the robustness of generative models by integrating classical geometric moments for shape awareness and minimizing trainable parameters. Additionally, I employ non-parametric priors for the generative model's latent space through basic probability and optimization methods to improve the fidelity of interpolated images. I adopt a hybrid approach to address domain-specific challenges with limited data and controllability, combining physics-based rendering with generative models for more realistic results. These approaches are particularly relevant in industrial settings, where the training datasets are small and class imbalance is common. Through extensive experiments on various datasets, I demonstrate the effectiveness of the proposed methods over conventional approaches.
ContributorsSingh, Rajhans (Author) / Turaga, Pavan (Thesis advisor) / Jayasuriya, Suren (Committee member) / Berisha, Visar (Committee member) / Fazli, Pooyan (Committee member) / Arizona State University (Publisher)
Created2023
187804-Thumbnail Image.png
Description
Quantum computing is becoming more accessible through modern noisy intermediate scale quantum (NISQ) devices. These devices require substantial error correction and scaling before they become capable of fulfilling many of the promises that quantum computing algorithms make. This work investigates the current state of NISQ devices by implementing multiple classical

Quantum computing is becoming more accessible through modern noisy intermediate scale quantum (NISQ) devices. These devices require substantial error correction and scaling before they become capable of fulfilling many of the promises that quantum computing algorithms make. This work investigates the current state of NISQ devices by implementing multiple classical computing scenarios with a quantum analog to observe how current quantum technology can be leveraged to achieve different tasks. First, quantum homomorphic encryption (QHE) is applied to the quantum teleportation protocol to show that this form of algorithm security is possible to implement with modern quantum computing simulators. QHE is capable of completely obscuring a teleported state with a liner increase in the number of qubit gates O(n). Additionally, the circuit depth increases minimally by only a constant factor O(c) when using only stabilizer circuits. Quantum machine learning (QML) is another potential application of NISQ technology that can be used to modify classical AI. QML is investigated using quantum hybrid neural networks for the classification of spoken commands on live audio data. Additionally, an edge computing scenario is examined to profile the interactions between a quantum simulator acting as a cloud server and an embedded processor board at the network edge. It is not practical to embed NISQ processors at a network edge, so this paradigm is important to study for practical quantum computing systems. The quantum hybrid neural network (QNN) learned to classify audio with equivalent accuracy (~94%) to a classical recurrent neural network. Introducing quantum simulation slows the systems responsiveness because it takes significantly longer to process quantum simulations than a classical neural network. This work shows that it is viable to implement classical computing techniques with quantum algorithms, but that current NISQ processing is sub-optimal when compared to classical methods.
ContributorsYarter, Maxwell (Author) / Spanias, Andreas (Thesis advisor) / Arenz, Christian (Committee member) / Dasarathy, Gautam (Committee member) / Arizona State University (Publisher)
Created2023
187454-Thumbnail Image.png
Description
This dissertation presents novel solutions for improving the generalization capabilities of deep learning based computer vision models. Neural networks are known to suffer a large drop in performance when tested on samples from a different distribution than the one on which they were trained. The proposed solutions, based on latent

This dissertation presents novel solutions for improving the generalization capabilities of deep learning based computer vision models. Neural networks are known to suffer a large drop in performance when tested on samples from a different distribution than the one on which they were trained. The proposed solutions, based on latent space geometry and meta-learning, address this issue by improving the robustness of these models to distribution shifts. Through the use of geometrical alignment, state-of-the-art domain adaptation and source-free test-time adaptation strategies are developed. Additionally, geometrical alignment can allow classifiers to be progressively adapted to new, unseen test domains without requiring retraining of the feature extractors. The dissertation also presents algorithms for enabling in-the-wild generalization without needing access to any samples from the target domain. Other causes of poor generalization, such as data scarcity in critical applications and training data with high levels of noise and variance, are also explored. To address data scarcity in fine-grained computer vision tasks such as object detection, novel context-aware augmentations are suggested. While the first four chapters focus on general-purpose computer vision models, strategies are also developed to improve robustness in specific applications. The efficiency of training autonomous agents for visual navigation is improved by incorporating semantic knowledge, and the integration of domain experts' knowledge allows for the realization of a low-cost, minimally invasive generalizable automated rehabilitation system. Lastly, new tools for explainability and model introspection using counter-factual explainers trained through interval-based uncertainty calibration objectives are presented.
ContributorsThopalli, Kowshik (Author) / Turaga, Pavan (Thesis advisor) / Thiagarajan, Jayaraman J (Committee member) / Li, Baoxin (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2023
187456-Thumbnail Image.png
Description
The past decade witnessed the success of deep learning models in various applications of computer vision and natural language processing. This success can be predominantly attributed to the (i) availability of large amounts of training data; (ii) access of domain aware knowledge; (iii) i.i.d assumption between the train and target

The past decade witnessed the success of deep learning models in various applications of computer vision and natural language processing. This success can be predominantly attributed to the (i) availability of large amounts of training data; (ii) access of domain aware knowledge; (iii) i.i.d assumption between the train and target distributions and (iv) belief on existing metrics as reliable indicators of performance. When any of these assumptions are violated, the models exhibit brittleness producing adversely varied behavior. This dissertation focuses on methods for accurate model design and characterization that enhance process reliability when certain assumptions are not met. With the need to safely adopt artificial intelligence tools in practice, it is vital to build reliable failure detectors that indicate regimes where the model must not be invoked. To that end, an error predictor trained with a self-calibration objective is developed to estimate loss consistent with the underlying model. The properties of the error predictor are described and their utility in supporting introspection via feature importances and counterfactual explanations is elucidated. While such an approach can signal data regime changes, it is critical to calibrate models using regimes of inlier (training) and outlier data to prevent under- and over-generalization in models i.e., incorrectly identifying inliers as outliers and vice-versa. By identifying the space for specifying inliers and outliers, an anomaly detector that can effectively flag data of varying semantic complexities in medical imaging is next developed. Uncertainty quantification in deep learning models involves identifying sources of failure and characterizing model confidence to enable actionability. A training strategy is developed that allows the accurate estimation of model uncertainties and its benefits are demonstrated for active learning and generalization gap prediction. This helps identify insufficiently sampled regimes and representation insufficiency in models. In addition, the task of deep inversion under data scarce scenarios is considered, which in practice requires a prior to control the optimization. By identifying limitations in existing work, data priors powered by generative models and deep model priors are designed for audio restoration. With relevant empirical studies on a variety of benchmarks, the need for such design strategies is demonstrated.
ContributorsNarayanaswamy, Vivek Sivaraman (Author) / Spanias, Andreas (Thesis advisor) / J. Thiagarajan, Jayaraman (Committee member) / Berisha, Visar (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2023
191748-Thumbnail Image.png
Description
Millimeter-wave (mmWave) and sub-terahertz (sub-THz) systems aim to utilize the large bandwidth available at these frequencies. This has the potential to enable several future applications that require high data rates, such as autonomous vehicles and digital twins. These systems, however, have several challenges that need to be addressed to realize

Millimeter-wave (mmWave) and sub-terahertz (sub-THz) systems aim to utilize the large bandwidth available at these frequencies. This has the potential to enable several future applications that require high data rates, such as autonomous vehicles and digital twins. These systems, however, have several challenges that need to be addressed to realize their gains in practice. First, they need to deploy large antenna arrays and use narrow beams to guarantee sufficient receive power. Adjusting the narrow beams of the large antenna arrays incurs massive beam training overhead. Second, the sensitivity to blockages is a key challenge for mmWave and THz networks. Since these networks mainly rely on line-of-sight (LOS) links, sudden link blockages highly threaten the reliability of the networks. Further, when the LOS link is blocked, the network typically needs to hand off the user to another LOS basestation, which may incur critical time latency, especially if a search over a large codebook of narrow beams is needed. A promising way to tackle both these challenges lies in leveraging additional side information such as visual, LiDAR, radar, and position data. These sensors provide rich information about the wireless environment, which can be utilized for fast beam and blockage prediction. This dissertation presents a machine-learning framework for sensing-aided beam and blockage prediction. In particular, for beam prediction, this work proposes to utilize visual and positional data to predict the optimal beam indices. For the first time, this work investigates the sensing-aided beam prediction task in a real-world vehicle-to-infrastructure and drone communication scenario. Similarly, for blockage prediction, this dissertation proposes a multi-modal wireless communication solution that utilizes bimodal machine learning to perform proactive blockage prediction and user hand-off. Evaluations on both real-world and synthetic datasets illustrate the promising performance of the proposed solutions and highlight their potential for next-generation communication and sensing systems.
ContributorsCharan, Gouranga (Author) / Alkhateeb, Ahmed (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Turaga, Pavan (Committee member) / Michelusi, Nicolò (Committee member) / Arizona State University (Publisher)
Created2024
156747-Thumbnail Image.png
Description
Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use

Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use due to difficulty in training diverse experts and high computational requirements. This work presents modifications of the mixture of experts formulation that use domain knowledge to improve training, and incorporate parameter sharing among experts to reduce computational requirements.

First, this work presents an application of mixture of experts models for quality robust visual recognition. First it is shown that human subjects outperform deep neural networks on classification of distorted images, and then propose a model, MixQualNet, that is more robust to distortions. The proposed model consists of ``experts'' that are trained on a particular type of image distortion. The final output of the model is a weighted sum of the expert models, where the weights are determined by a separate gating network. The proposed model also incorporates weight sharing to reduce the number of parameters, as well as increase performance.



Second, an application of mixture of experts to predict visual saliency is presented. A computational saliency model attempts to predict where humans will look in an image. In the proposed model, each expert network is trained to predict saliency for a set of closely related images. The final saliency map is computed as a weighted mixture of the expert networks' outputs, with weights determined by a separate gating network. The proposed model achieves better performance than several other visual saliency models and a baseline non-mixture model.

Finally, this work introduces a saliency model that is a weighted mixture of models trained for different levels of saliency. Levels of saliency include high saliency, which corresponds to regions where almost all subjects look, and low saliency, which corresponds to regions where some, but not all subjects look. The weighted mixture shows improved performance compared with baseline models because of the diversity of the individual model predictions.
ContributorsDodge, Samuel Fuller (Author) / Karam, Lina (Thesis advisor) / Jayasuriya, Suren (Committee member) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2018
153223-Thumbnail Image.png
Description
Feature representations for raw data is one of the most important component in a machine learning system. Traditionally, features are \textit{hand crafted} by domain experts which can often be a time consuming process. Furthermore, they do not generalize well to unseen data and novel tasks. Recently, there have been many

Feature representations for raw data is one of the most important component in a machine learning system. Traditionally, features are \textit{hand crafted} by domain experts which can often be a time consuming process. Furthermore, they do not generalize well to unseen data and novel tasks. Recently, there have been many efforts to generate data-driven representations using clustering and sparse models. This dissertation focuses on building data-driven unsupervised models for analyzing raw data and developing efficient feature representations.

Simultaneous segmentation and feature extraction approaches for silicon-pores sensor data are considered. Aggregating data into a matrix and performing low rank and sparse matrix decompositions with additional smoothness constraints are proposed to solve this problem. Comparison of several variants of the approaches and results for signal de-noising and translocation/trapping event extraction are presented. Algorithms to improve transform-domain features for ion-channel time-series signals based on matrix completion are presented. The improved features achieve better performance in classification tasks and in reducing the false alarm rates when applied to analyte detection.

Developing representations for multimedia is an important and challenging problem with applications ranging from scene recognition, multi-media retrieval and personal life-logging systems to field robot navigation. In this dissertation, we present a new framework for feature extraction for challenging natural environment sounds. Proposed features outperform traditional spectral features on challenging environmental sound datasets. Several algorithms are proposed that perform supervised tasks such as recognition and tag annotation. Ensemble methods are proposed to improve the tag annotation process.

To facilitate the use of large datasets, fast implementations are developed for sparse coding, the key component in our algorithms. Several strategies to speed-up Orthogonal Matching Pursuit algorithm using CUDA kernel on a GPU are proposed. Implementations are also developed for a large scale image retrieval system. Image-based "exact search" and "visually similar search" using the image patch sparse codes are performed. Results demonstrate large speed-up over CPU implementations and good retrieval performance is also achieved.
ContributorsSattigeri, Prasanna S (Author) / Spanias, Andreas (Thesis advisor) / Thornton, Trevor (Committee member) / Goryll, Michael (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2014
155540-Thumbnail Image.png
Description
Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and

Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and image scenes.





Solder ball height and substrate coplanarity inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height and substrate coplanarity inspection tools are expensive and slow, which makes them difficult to use in a real-time manufacturing setting. In this dissertation, an automatic, stereo vision based, in-line ball height and coplanarity inspection method is presented. The proposed method includes an imaging setup together with a computer vision algorithm for reliable, in-line ball height measurement. The imaging setup and calibration, ball height estimation and substrate coplanarity calculation are presented with novel stereo vision methods. The results of the proposed method are evaluated in a measurement capability analysis (MCA) procedure and compared with the ground-truth obtained by an existing laser scanning tool and an existing confocal inspection tool. The proposed system outperforms existing inspection tools in terms of accuracy and stability.



In a rectified stereo vision system, stereo matching methods can be categorized into global methods and local methods. Local stereo methods are more suitable for real-time processing purposes with competitive accuracy as compared with global methods. This work proposes a stereo matching method based on sparse locally adaptive cost aggregation. In order to reduce outlier disparity values that correspond to mis-matches, a novel sparse disparity subset selection method is proposed by assigning a significance status to candidate disparity values, and selecting the significant disparity values adaptively. An adaptive guided filtering method using the disparity subset for refined cost aggregation and disparity calculation is demonstrated. The proposed stereo matching algorithm is tested on the Middlebury and the KITTI stereo evaluation benchmark images. A performance analysis of the proposed method in terms of the I0 norm of the disparity subset is presented to demonstrate the achieved efficiency and accuracy.
ContributorsLi, Jinjin (Author) / Karam, Lina (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Patel, Nital (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2017
156084-Thumbnail Image.png
Description
The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos.

The feature extraction processes can be categorized into three groups. The first group contains processes that are hand-crafted for a specific task. Hand-engineering features requires the knowledge of domain experts and manual labor. However, the feature extraction process is interpretable and explainable. Next group contains the latent-feature extraction processes. While the original feature lies in a high-dimensional space, the relevant factors for a task often lie on a lower dimensional manifold. The latent-feature extraction employs hidden variables to expose the underlying data properties that cannot be directly measured from the input. Latent features seek a specific structure such as sparsity or low-rank into the derived representation through sophisticated optimization techniques. The last category is that of deep features. These are obtained by passing raw input data with minimal pre-processing through a deep network. Its parameters are computed by iteratively minimizing a task-based loss.

In this dissertation, I present four pieces of work where I create and learn suitable data representations. The first task employs hand-crafted features to perform clinically-relevant retrieval of diabetic retinopathy images. The second task uses latent features to perform content-adaptive image enhancement. The third task ranks a pair of images based on their aestheticism. The goal of the last task is to capture localized image artifacts in small datasets with patch-level labels. For both these tasks, I propose novel deep architectures and show significant improvement over the previous state-of-art approaches. A suitable combination of feature representations augmented with an appropriate learning approach can increase performance for most visual computing tasks.
ContributorsChandakkar, Parag Shridhar (Author) / Li, Baoxin (Thesis advisor) / Yang, Yezhou (Committee member) / Turaga, Pavan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2017
158654-Thumbnail Image.png
Description
In recent years, the widespread use of deep neural networks (DNNs) has facilitated great improvements in performance for computer vision tasks like image classification and object recognition. In most realistic computer vision applications, an input image undergoes some form of image distortion such as blur and additive noise during image

In recent years, the widespread use of deep neural networks (DNNs) has facilitated great improvements in performance for computer vision tasks like image classification and object recognition. In most realistic computer vision applications, an input image undergoes some form of image distortion such as blur and additive noise during image acquisition or transmission. Deep networks trained on pristine images perform poorly when tested on such distortions. DNN predictions have also been shown to be vulnerable to carefully crafted adversarial perturbations. Specifically, so-called universal adversarial perturbations are image-agnostic perturbations that can be added to any image and can fool a target network into making erroneous predictions. This work proposes selective DNN feature regeneration to improve the robustness of existing DNNs to image distortions and universal adversarial perturbations.

In the context of common naturally occurring image distortions, a metric is proposed to identify the most susceptible DNN convolutional filters and rank them in order of the highest gain in classification accuracy upon correction. The proposed approach called DeepCorrect applies small stacks of convolutional layers with residual connections at the output of these ranked filters and trains them to correct the most distortion-affected filter activations, whilst leaving the rest of the pre-trained filter outputs in the network unchanged. Performance results show that applying DeepCorrect models for common vision tasks significantly improves the robustness of DNNs against distorted images and outperforms other alternative approaches.

In the context of universal adversarial perturbations, departing from existing defense strategies that work mostly in the image domain, a novel and effective defense which only operates in the DNN feature domain is presented. This approach identifies pre-trained convolutional features that are most vulnerable to adversarial perturbations and deploys trainable feature regeneration units which transform these DNN filter activations into resilient features that are robust to universal perturbations. Regenerating only the top 50% adversarially susceptible activations in at most 6 DNN layers and leaving all remaining DNN activations unchanged can outperform existing defense strategies across different network architectures and across various universal attacks.
ContributorsBorkar, Tejas Shyam (Author) / Karam, Lina J (Thesis advisor) / Turaga, Pavan (Committee member) / Jayasuriya, Suren (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2020