Matching Items (323)
Filtering by

Clear all filters

157311-Thumbnail Image.png
Description
Knowledge Representation (KR) is one of the prominent approaches to Artificial Intelligence (AI) that is concerned with representing knowledge in a form that computer systems can utilize to solve complex problems. Answer Set Programming (ASP), based on the stable model semantics, is a widely-used KR framework that facilitates elegant and

Knowledge Representation (KR) is one of the prominent approaches to Artificial Intelligence (AI) that is concerned with representing knowledge in a form that computer systems can utilize to solve complex problems. Answer Set Programming (ASP), based on the stable model semantics, is a widely-used KR framework that facilitates elegant and efficient representations for many problem domains that require complex reasoning.

However, while ASP is effective on deterministic problem domains, it is not suitable for applications involving quantitative uncertainty, for example, those that require probabilistic reasoning. Furthermore, it is hard to utilize information that can be statistically induced from data with ASP problem modeling.

This dissertation presents the language LP^MLN, which is a probabilistic extension of the stable model semantics with the concept of weighted rules, inspired by Markov Logic. An LP^MLN program defines a probability distribution over "soft" stable models, which may not satisfy all rules, but the more rules with the bigger weights they satisfy, the bigger their probabilities. LP^MLN takes advantage of both ASP and Markov Logic in a single framework, allowing representation of problems that require both logical and probabilistic reasoning in an intuitive and elaboration tolerant way.

This dissertation establishes formal relations between LP^MLN and several other formalisms, discusses inference and weight learning algorithms under LP^MLN, and presents systems implementing the algorithms. LP^MLN systems can be used to compute other languages translatable into LP^MLN.

The advantage of LP^MLN for probabilistic reasoning is illustrated by a probabilistic extension of the action language BC+, called pBC+, defined as a high-level notation of LP^MLN for describing transition systems. Various probabilistic reasoning about transition systems, especially probabilistic diagnosis, can be modeled in pBC+ and computed using LP^MLN systems. pBC+ is further extended with the notion of utility, through a decision-theoretic extension of LP^MLN, and related with Markov Decision Process (MDP) in terms of policy optimization problems. pBC+ can be used to represent (PO)MDP in a succinct and elaboration tolerant way, which enables planning with (PO)MDP algorithms in action domains whose description requires rich KR constructs, such as recursive definitions and indirect effects of actions.
ContributorsWang, Yi (Author) / Lee, Joohyung (Thesis advisor) / Baral, Chitta (Committee member) / Kambhampati, Subbarao (Committee member) / Natarajan, Sriraam (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2019
157313-Thumbnail Image.png
Description
Allocating tasks for a day's or week's schedule is known to be a challenging and difficult problem. The problem intensifies by many folds in multi-agent settings. A planner or group of planners who decide such kind of task association schedule must have a comprehensive perspective on (1) the entire array

Allocating tasks for a day's or week's schedule is known to be a challenging and difficult problem. The problem intensifies by many folds in multi-agent settings. A planner or group of planners who decide such kind of task association schedule must have a comprehensive perspective on (1) the entire array of tasks to be scheduled (2) idea on constraints like importance cum order of tasks and (3) the individual abilities of the operators. One example of such kind of scheduling is the crew scheduling done for astronauts who will spend time at International Space Station (ISS). The schedule for the crew of ISS is decided before the mission starts. Human planners take part in the decision-making process to determine the timing of activities for multiple days for multiple crew members at ISS. Given the unpredictability of individual assignments and limitations identified with the various operators, deciding upon a satisfactory timetable is a challenging task. The objective of the current work is to develop an automated decision assistant that would assist human planners in coming up with an acceptable task schedule for the crew. At the same time, the decision assistant will also ensure that human planners are always in the driver's seat throughout this process of decision-making.

The decision assistant will make use of automated planning technology to assist human planners. The guidelines of Naturalistic Decision Making (NDM) and the Human-In-The -Loop decision making were followed to make sure that the human is always in the driver's seat. The use cases considered are standard situations which come up during decision-making in crew-scheduling. The effectiveness of automated decision assistance was evaluated by setting it up for domain experts on a comparable domain of scheduling courses for master students. The results of the user study evaluating the effectiveness of automated decision support were subsequently published.
ContributorsMIshra, Aditya Prasad (Author) / Kambhampati, Subbarao (Thesis advisor) / Chiou, Erin (Committee member) / Demakethepalli Venkateswara, Hemanth Kumar (Committee member) / Arizona State University (Publisher)
Created2019
157052-Thumbnail Image.png
Description
In the artificial intelligence literature, three forms of reasoning are commonly employed to understand agent behavior: inductive, deductive, and abductive.  More recently, data-driven approaches leveraging ideas such as machine learning, data mining, and social network analysis have gained popularity. While data-driven variants of the aforementioned forms of reasoning have been applied

In the artificial intelligence literature, three forms of reasoning are commonly employed to understand agent behavior: inductive, deductive, and abductive.  More recently, data-driven approaches leveraging ideas such as machine learning, data mining, and social network analysis have gained popularity. While data-driven variants of the aforementioned forms of reasoning have been applied separately, there is little work on how data-driven approaches across all three forms relate and lend themselves to practical applications. Given an agent behavior and the percept sequence, how one can identify a specific outcome such as the likeliest explanation? To address real-world problems, it is vital to understand the different types of reasonings which can lead to better data-driven inference.  

This dissertation has laid the groundwork for studying these relationships and applying them to three real-world problems. In criminal modeling, inductive and deductive reasonings are applied to early prediction of violent criminal gang members. To address this problem the features derived from the co-arrestee social network as well as geographical and temporal features are leveraged. Then, a data-driven variant of geospatial abductive inference is studied in missing person problem to locate the missing person. Finally, induction and abduction reasonings are studied for identifying pathogenic accounts of a cascade in social networks.
ContributorsShaabani, Elham (Author) / Shakarian, Paulo (Thesis advisor) / Davulcu, Hasan (Committee member) / Maciejewski, Ross (Committee member) / Decker, Scott (Committee member) / Arizona State University (Publisher)
Created2019
157057-Thumbnail Image.png
Description
The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information.

The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information. As witnessed in recent incidents of misinformation, it escalates quickly and can impact social media users with undesirable consequences and wreak havoc instantaneously. Different from some existing research in psychology and social sciences about misinformation, social media platforms pose unprecedented challenges for misinformation detection. First, intentional spreaders of misinformation will actively disguise themselves. Second, content of misinformation may be manipulated to avoid being detected, while abundant contextual information may play a vital role in detecting it. Third, not only accuracy, earliness of a detection method is also important in containing misinformation from being viral. Fourth, social media platforms have been used as a fundamental data source for various disciplines, and these research may have been conducted in the presence of misinformation. To tackle the challenges, we focus on developing machine learning algorithms that are robust to adversarial manipulation and data scarcity.

The main objective of this dissertation is to provide a systematic study of misinformation detection in social media. To tackle the challenges of adversarial attacks, I propose adaptive detection algorithms to deal with the active manipulations of misinformation spreaders via content and networks. To facilitate content-based approaches, I analyze the contextual data of misinformation and propose to incorporate the specific contextual patterns of misinformation into a principled detection framework. Considering its rapidly growing nature, I study how misinformation can be detected at an early stage. In particular, I focus on the challenge of data scarcity and propose a novel framework to enable historical data to be utilized for emerging incidents that are seemingly irrelevant. With misinformation being viral, applications that rely on social media data face the challenge of corrupted data. To this end, I present robust statistical relational learning and personalization algorithms to minimize the negative effect of misinformation.
ContributorsWu, Liang (Author) / Liu, Huan (Thesis advisor) / Tong, Hanghang (Committee member) / Doupe, Adam (Committee member) / Davison, Brian D. (Committee member) / Arizona State University (Publisher)
Created2019
157015-Thumbnail Image.png
Description
Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data,

Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data, robustness to noise in previously unseen data and high inference accuracy. With the ability to learn useful features from raw sensor data, deep learning algorithms have out-performed tradinal AI algorithms and pushed the boundaries of what can be achieved with AI. In this work, we demonstrate the power of deep learning by developing a neural network to automatically detect cough instances from audio recorded in un-constrained environments. For this, 24 hours long recordings from 9 dierent patients is collected and carefully labeled by medical personel. A pre-processing algorithm is proposed to convert event based cough dataset to a more informative dataset with start and end of coughs and also introduce data augmentation for regularizing the training procedure. The proposed neural network achieves 92.3% leave-one-out accuracy on data captured in real world.

Deep neural networks are composed of multiple layers that are compute/memory intensive. This makes it difficult to execute these algorithms real-time with low power consumption using existing general purpose computers. In this work, we propose hardware accelerators for a traditional AI algorithm based on random forest trees and two representative deep convolutional neural networks (AlexNet and VGG). With the proposed acceleration techniques, ~ 30x performance improvement was achieved compared to CPU for random forest trees. For deep CNNS, we demonstrate that much higher performance can be achieved with architecture space exploration using any optimization algorithms with system level performance and area models for hardware primitives as inputs and goal of minimizing latency with given resource constraints. With this method, ~30GOPs performance was achieved for Stratix V FPGA boards.

Hardware acceleration of DL algorithms alone is not always the most ecient way and sucient to achieve desired performance. There is a huge headroom available for performance improvement provided the algorithms are designed keeping in mind the hardware limitations and bottlenecks. This work achieves hardware-software co-optimization for Non-Maximal Suppression (NMS) algorithm. Using the proposed algorithmic changes and hardware architecture

With CMOS scaling coming to an end and increasing memory bandwidth bottlenecks, CMOS based system might not scale enough to accommodate requirements of more complicated and deeper neural networks in future. In this work, we explore RRAM crossbars and arrays as compact, high performing and energy efficient alternative to CMOS accelerators for deep learning training and inference. We propose and implement RRAM periphery read and write circuits and achieved ~3000x performance improvement in online dictionary learning compared to CPU.

This work also examines the realistic RRAM devices and their non-idealities. We do an in-depth study of the effects of RRAM non-idealities on inference accuracy when a pretrained model is mapped to RRAM based accelerators. To mitigate this issue, we propose Random Sparse Adaptation (RSA), a novel scheme aimed at tuning the model to take care of the faults of the RRAM array on which it is mapped. Our proposed method can achieve inference accuracy much higher than what traditional Read-Verify-Write (R-V-W) method could achieve. RSA can also recover lost inference accuracy 100x ~ 1000x faster compared to R-V-W. Using 32-bit high precision RSA cells, we achieved ~10% higher accuracy using fautly RRAM arrays compared to what can be achieved by mapping a deep network to an 32 level RRAM array with no variations.
ContributorsMohanty, Abinash (Author) / Cao, Yu (Thesis advisor) / Seo, Jae-Sun (Committee member) / Vrudhula, Sarma (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2018
157016-Thumbnail Image.png
Description
A critical challenge in the design of AI systems that operate with humans in the loop is to be able to model the intentions and capabilities of the humans, as well as their beliefs and expectations of the AI system itself. This allows the AI system to be "human- aware"

A critical challenge in the design of AI systems that operate with humans in the loop is to be able to model the intentions and capabilities of the humans, as well as their beliefs and expectations of the AI system itself. This allows the AI system to be "human- aware" -- i.e. the human task model enables it to envisage desired roles of the human in joint action, while the human mental model allows it to anticipate how its own actions are perceived from the point of view of the human. In my research, I explore how these concepts of human-awareness manifest themselves in the scope of planning or sequential decision making with humans in the loop. To this end, I will show (1) how the AI agent can leverage the human task model to generate symbiotic behavior; and (2) how the introduction of the human mental model in the deliberative process of the AI agent allows it to generate explanations for a plan or resort to explicable plans when explanations are not desired. The latter is in addition to traditional notions of human-aware planning which typically use the human task model alone and thus enables a new suite of capabilities of a human-aware AI agent. Finally, I will explore how the AI agent can leverage emerging mixed-reality interfaces to realize effective channels of communication with the human in the loop.
ContributorsChakraborti, Tathagata (Author) / Kambhampati, Subbarao (Thesis advisor) / Talamadupula, Kartik (Committee member) / Scheutz, Matthias (Committee member) / Ben Amor, Hani (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2018
133880-Thumbnail Image.png
Description
In this project, the use of deep neural networks for the process of selecting actions to execute within an environment to achieve a goal is explored. Scenarios like this are common in crafting based games such as Terraria or Minecraft. Goals in these environments have recursive sub-goal dependencies which form

In this project, the use of deep neural networks for the process of selecting actions to execute within an environment to achieve a goal is explored. Scenarios like this are common in crafting based games such as Terraria or Minecraft. Goals in these environments have recursive sub-goal dependencies which form a dependency tree. An agent operating within these environments have access to low amounts of data about the environment before interacting with it, so it is crucial that this agent is able to effectively utilize a tree of dependencies and its environmental surroundings to make judgements about which sub-goals are most efficient to pursue at any point in time. A successful agent aims to minimizes cost when completing a given goal. A deep neural network in combination with Q-learning techniques was employed to act as the agent in this environment. This agent consistently performed better than agents using alternate models (models that used dependency tree heuristics or human-like approaches to make sub-goal oriented choices), with an average performance advantage of 33.86% (with a standard deviation of 14.69%) over the best alternate agent. This shows that machine learning techniques can be consistently employed to make goal-oriented choices within an environment with recursive sub-goal dependencies and low amounts of pre-known information.
ContributorsKoleber, Derek (Author) / Acuna, Ruben (Thesis director) / Bansal, Ajay (Committee member) / W.P. Carey School of Business (Contributor) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133894-Thumbnail Image.png
Description
Pandora is a play exploring our relationship with gendered technology through the lens of artificial intelligence. Can women be subjective under patriarchy? Do robots who look like women have subjectivity? Hoping to create a better version of ourselves, The Engineer must navigate the loss of her creation, and Pandora must

Pandora is a play exploring our relationship with gendered technology through the lens of artificial intelligence. Can women be subjective under patriarchy? Do robots who look like women have subjectivity? Hoping to create a better version of ourselves, The Engineer must navigate the loss of her creation, and Pandora must navigate their new world. The original premiere run was March 27-28, 2018, original cast: Caitlin Andelora, Rikki Tremblay, and Michael Tristano Jr.
ContributorsToye, Abigail Elizabeth (Author) / Linde, Jennifer (Thesis director) / Abele, Kelsey (Committee member) / Department of Information Systems (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133901-Thumbnail Image.png
Description
This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally

This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally accepted model of an artificial neuron is broken down into its key components and then analyzed for functionality by relating back to its biological counterpart. The role of a neuron is then described in the context of a neural network, with equal emphasis placed on how it individually undergoes training and then for an entire network. Using the technique of supervised learning, the neural network is trained with three main factors for housing price classification, including its total number of rooms, bathrooms, and square footage. Once trained with most of the generated data set, it is tested for accuracy by introducing the remainder of the data-set and observing how closely its computed output for each set of inputs compares to the target value. From a programming perspective, the artificial neuron is implemented in C so that it would be more closely tied to the operating system and therefore make the collected profiler data more precise during the program's execution. The program is designed to break down each stage of the neuron's training process into distinct functions. In addition to utilizing more functional code, the struct data type is used as the underlying data structure for this project to not only represent the neuron but for implementing the neuron's training and test data. Once fully trained, the neuron's test results are then graphed to visually depict how well the neuron learned from its sample training set. Finally, the profiler data is analyzed to describe how the program operated from a data management perspective on the software and hardware level.
ContributorsRichards, Nicholas Giovanni (Author) / Miller, Phillip (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136202-Thumbnail Image.png
Description
The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques

The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques to align natural language sentences to the linearized parses of their associated knowledge representations in order to learn the meanings of individual words. The work includes proposing and analyzing an approach that can be used to learn some of the initial lexicon.
ContributorsBaldwin, Amy Lynn (Author) / Baral, Chitta (Thesis director) / Vo, Nguyen (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05