Matching Items (4)
Filtering by

Clear all filters

133901-Thumbnail Image.png
Description
This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally

This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally accepted model of an artificial neuron is broken down into its key components and then analyzed for functionality by relating back to its biological counterpart. The role of a neuron is then described in the context of a neural network, with equal emphasis placed on how it individually undergoes training and then for an entire network. Using the technique of supervised learning, the neural network is trained with three main factors for housing price classification, including its total number of rooms, bathrooms, and square footage. Once trained with most of the generated data set, it is tested for accuracy by introducing the remainder of the data-set and observing how closely its computed output for each set of inputs compares to the target value. From a programming perspective, the artificial neuron is implemented in C so that it would be more closely tied to the operating system and therefore make the collected profiler data more precise during the program's execution. The program is designed to break down each stage of the neuron's training process into distinct functions. In addition to utilizing more functional code, the struct data type is used as the underlying data structure for this project to not only represent the neuron but for implementing the neuron's training and test data. Once fully trained, the neuron's test results are then graphed to visually depict how well the neuron learned from its sample training set. Finally, the profiler data is analyzed to describe how the program operated from a data management perspective on the software and hardware level.
ContributorsRichards, Nicholas Giovanni (Author) / Miller, Phillip (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136378-Thumbnail Image.png
Description
While there is extensive information available about organizations that receive donated organs for transplant, much less is known about those that accept tissue and whole bodies for medical education and research. Throughout the United States, nontransplant anatomical donation organizations exist within an ambiguous sector of the donation industry, unencumbered by

While there is extensive information available about organizations that receive donated organs for transplant, much less is known about those that accept tissue and whole bodies for medical education and research. Throughout the United States, nontransplant anatomical donation organizations exist within an ambiguous sector of the donation industry, unencumbered by federal regulations. Although these companies adhere to the Uniform Anatomical Gift Act, the lack of a single entity responsible for overseeing their operations has led to public skepticism and animosity among competing businesses. Legislation has the potential to legitimize the industry. For it to be successful, however, the intricacies of a complex market that deals directly with the movement of human remains and intangible issues of human integrity and morality, must be thoroughly understood.
ContributorsGlynn, Emily Sanders (Author) / Brian, Jennifer (Thesis director) / Fisher, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor) / Department of English (Contributor)
Created2015-05
166227-Thumbnail Image.png
Description
Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done

Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done with industry standard performance technology and protocols to create an accessible interface for creative expression. Artificial intelligence models were created to generate art based on simple text inputs. Users were then invited to display their creativity using the software, and a comprehensive performance showcased the potential of the system for artistic expression.
ContributorsPardhe, Joshua (Author) / Lim, Kang Yi (Co-author) / Meuth, Ryan (Thesis director) / Brian, Jennifer (Committee member) / Hermann, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
166228-Thumbnail Image.png
Description
Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done

Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done with industry standard performance technology and protocols to create an accessible interface for creative expression. Artificial intelligence models were created to generate art based on simple text inputs. Users were then invited to display their creativity using the software, and a comprehensive performance showcased the potential of the system for artistic expression.
ContributorsLim, Kang Yi (Author) / Pardhe, Joshua (Co-author) / Meuth, Ryan (Thesis director) / Brian, Jennifer (Committee member) / Hermann, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05