Matching Items (45)
Filtering by

Clear all filters

133901-Thumbnail Image.png
Description
This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally

This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally accepted model of an artificial neuron is broken down into its key components and then analyzed for functionality by relating back to its biological counterpart. The role of a neuron is then described in the context of a neural network, with equal emphasis placed on how it individually undergoes training and then for an entire network. Using the technique of supervised learning, the neural network is trained with three main factors for housing price classification, including its total number of rooms, bathrooms, and square footage. Once trained with most of the generated data set, it is tested for accuracy by introducing the remainder of the data-set and observing how closely its computed output for each set of inputs compares to the target value. From a programming perspective, the artificial neuron is implemented in C so that it would be more closely tied to the operating system and therefore make the collected profiler data more precise during the program's execution. The program is designed to break down each stage of the neuron's training process into distinct functions. In addition to utilizing more functional code, the struct data type is used as the underlying data structure for this project to not only represent the neuron but for implementing the neuron's training and test data. Once fully trained, the neuron's test results are then graphed to visually depict how well the neuron learned from its sample training set. Finally, the profiler data is analyzed to describe how the program operated from a data management perspective on the software and hardware level.
ContributorsRichards, Nicholas Giovanni (Author) / Miller, Phillip (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136202-Thumbnail Image.png
Description
The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques

The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques to align natural language sentences to the linearized parses of their associated knowledge representations in order to learn the meanings of individual words. The work includes proposing and analyzing an approach that can be used to learn some of the initial lexicon.
ContributorsBaldwin, Amy Lynn (Author) / Baral, Chitta (Thesis director) / Vo, Nguyen (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
133565-Thumbnail Image.png
Description
This paper details the process for designing both a simulation of the board game Jaipur, and an artificial intelligence (AI) agent that can play the game against a human player. When designing an AI for a card game, there are two major problems that can arise. The first is the

This paper details the process for designing both a simulation of the board game Jaipur, and an artificial intelligence (AI) agent that can play the game against a human player. When designing an AI for a card game, there are two major problems that can arise. The first is the difficulty of using a search space to analyze every possible set of future moves. Due to the randomized nature of the deck of cards, the search space rapidly leads to an exponentially growing set of potential game states to analyze when one tries to look more than one turn ahead. The second aspect that poses difficulty is the element of uncertainty that exists from opponent feedback. Certain moves are weak to specific opponent reactions, and these are difficult to predict due to hidden information. To circumvent these problems, the AI uses a greedy approach to decision making, attempting to maximize the value of its plays immediately, and not play for future turns. The agent utilizes conditional statements to evaluate the game state and choose a game action that it deems optimal, a heuristic to place an expected value (EV) of the goods it can choose from, and selects the best one based on this evaluation. Initial implementation of the simulation was done using C++ through a terminal application, and then was translated to a graphical interface using Unity and C#.
ContributorsOrr, James Christopher (Author) / Kobayashi, Yoshihiro (Thesis director) / Selgrad, Justin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135242-Thumbnail Image.png
Description
Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply

Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply obtaining such exploits – so an alternative approach is needed to understand what exploits an attacker will most likely purchase and how to defend against them. In this paper, we introduce a data-driven security game framework to model an attacker and provide policy recommendations to the defender. In addition to providing a formal framework and algorithms to develop strategies, we present experimental results from applying our framework, for various system configurations, on real-world exploit market data actively mined from the darknet.
ContributorsRobertson, John James (Author) / Shakarian, Paulo (Thesis director) / Doupe, Adam (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134486-Thumbnail Image.png
Description
The objective of this creative project was to gain experience in digital modeling, animation, coding, shader development and implementation, model integration techniques, and application of gaming principles and design through developing a professional educational game. The team collaborated with Glendale Community College (GCC) to produce an interactive product intended to

The objective of this creative project was to gain experience in digital modeling, animation, coding, shader development and implementation, model integration techniques, and application of gaming principles and design through developing a professional educational game. The team collaborated with Glendale Community College (GCC) to produce an interactive product intended to supplement educational instructions regarding nutrition. The educational game developed, "Nutribots" features the player acting as a nutrition based nanobot sent to the small intestine to help the body. Throughout the game the player will be asked nutrition based questions to test their knowledge of proteins, carbohydrates, and lipids. If the player is unable to answer the question, they must use game mechanics to progress and receive the information as a reward. The level is completed as soon as the question is answered correctly. If the player answers the questions incorrectly twenty times within the entirety of the game, the team loses faith in the player, and the player must reset from title screen. This is to limit guessing and to make sure the player retains the information through repetition once it is demonstrated that they do not know the answers. The team was split into two different groups for the development of this game. The first part of the team developed models, animations, and textures using Autodesk Maya 2016 and Marvelous Designer. The second part of the team developed code and shaders, and implemented products from the first team using Unity and Visual Studio. Once a prototype of the game was developed, it was show-cased amongst peers to gain feedback. Upon receiving feedback, the team implemented the desired changes accordingly. Development for this project began on November 2015 and ended on April 2017. Special thanks to Laura Avila Department Chair and Jennifer Nolz from Glendale Community College Technology and Consumer Sciences, Food and Nutrition Department.
ContributorsNolz, Daisy (Co-author) / Martin, Austin (Co-author) / Quinio, Santiago (Co-author) / Armstrong, Jessica (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Valderrama, Jamie (Committee member) / School of Arts, Media and Engineering (Contributor) / School of Film, Dance and Theatre (Contributor) / Department of English (Contributor) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132921-Thumbnail Image.png
Description
Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays, controllers, and auditory feedback, virtual reality provides a convincing simulation of

Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays, controllers, and auditory feedback, virtual reality provides a convincing simulation of interactable virtual worlds (Wikipedia, “Virtual reality”). The many worlds of virtual reality are often expansive, colorful, and detailed. However, there is one great flaw among them- an emotion evoked in many users through the exploration of such worlds-loneliness.
The content in these worlds is impressive, immersive, and entertaining. Without other people to share in these experiences, however, one can find themselves lonely. Users discover a feeling that no matter how many objects and colors surround them in countless virtual worlds, every world feels empty. As humans are social beings by nature, they feel lost without a sense of human connection and human interaction. Multiplayer experiences offer this missing element into the immersion of virtual reality worlds. Multiplayer offers users the opportunity to interact with other live people in a virtual simulation, which creates lasting memories and deeper, more meaningful immersion.
ContributorsJorgensen, Nicholas Keith (Co-author) / Jorgensen, Caitlin Nicole (Co-author) / Selgrad, Justin (Thesis director) / Ehgner, Arnaud (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132967-Thumbnail Image.png
Description
Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that,

Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that, given an abstract problem state, predicts both (i) the best action to be taken from that state and (ii) the generalized “role” of the object being manipulated. The neural network was tested on two classical planning domains: the blocks world domain and the logistic domain. Results indicate that neural networks are capable of making such
predictions with high accuracy, indicating a promising new framework for approaching generalized planning problems.
ContributorsNakhleh, Julia Blair (Author) / Srivastava, Siddharth (Thesis director) / Fainekos, Georgios (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133339-Thumbnail Image.png
Description
Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important

Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important aspect within these records is the presence of prescription information. Existing techniques for extracting prescription information — which includes medication names, dosages, frequencies, reasons for taking, and mode of administration — from unstructured text have focused on the application of rule- and classifier-based methods. While state-of-the-art systems can be effective in extracting many types of information, they require significant effort to develop hand-crafted rules and conduct effective feature engineering. This paper presents the use of a bidirectional LSTM with CRF tagging model initialized with precomputed word embeddings for extracting prescription information from sentences without requiring significant feature engineering. The experimental results, run on the i2b2 2009 dataset, achieve an F1 macro measure of 0.8562, and scores above 0.9449 on four of the six categories, indicating significant potential for this model.
ContributorsRawal, Samarth Chetan (Author) / Baral, Chitta (Thesis director) / Anwar, Saadat (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133515-Thumbnail Image.png
Description
Natural Language Processing and Virtual Reality are hot topics in the present. How can we synthesize these together in order to make a cohesive experience? The game focuses on users using vocal commands, building structures, and memorizing spatial objects. In order to get proper vocal commands, the IBM Watson API

Natural Language Processing and Virtual Reality are hot topics in the present. How can we synthesize these together in order to make a cohesive experience? The game focuses on users using vocal commands, building structures, and memorizing spatial objects. In order to get proper vocal commands, the IBM Watson API for Natural Language Processing was incorporated into our game system. User experience elements like gestures, UI color change, and images were used to help guide users in memorizing and building structures. The process to create these elements were streamlined through the VRTK library in Unity. The game has two segments. The first segment is a tutorial level where the user learns to perform motions and in-game actions. The second segment is a game where the user must correctly create a structure by utilizing vocal commands and spatial recognition. A standardized usability test, System Usability Scale, was used to evaluate the effectiveness of the game. A survey was also created in order to evaluate a more descriptive user opinion. Overall, users gave a positive score on the System Usability Scale and slightly positive reviews in the custom survey.
ContributorsOrtega, Excel (Co-author) / Ryan, Alexander (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computing and Informatics Program (Contributor) / School of Art (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134257-Thumbnail Image.png
Description
This thesis describes a multi-robot architecture which allows teams of robots to work with humans to complete tasks. The multi-agent architecture was built using Robot Operating System and Python. This architecture was designed modularly, allowing the use of different planners and robots. The system automatically replans when robots connect or

This thesis describes a multi-robot architecture which allows teams of robots to work with humans to complete tasks. The multi-agent architecture was built using Robot Operating System and Python. This architecture was designed modularly, allowing the use of different planners and robots. The system automatically replans when robots connect or disconnect. The system was demonstrated on two real robots, a Fetch and a PeopleBot, by conducting a surveillance task on the fifth floor of the Computer Science building at Arizona State University. The next part of the system includes extensions for teaming with humans. An Android application was created to serve as the interface between the system and human teammates. This application provides a way for the system to communicate with humans in the loop. In addition, it sends location information of the human teammates to the system so that goal recognition can be performed. This goal recognition allows the generation of human-aware plans. This capability was demonstrated in a mock search and rescue scenario using the Fetch to locate a missing teammate.
ContributorsSaba, Gabriel Christer (Author) / Kambhampati, Subbarao (Thesis director) / Doupé, Adam (Committee member) / Chakraborti, Tathagata (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05