Matching Items (17)
Filtering by

Clear all filters

136691-Thumbnail Image.png
Description
Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has

Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has size close to or equal to the minimum possible. The construction of such permutation coverings has proven to be computationally difficult. While many examples for permutations of small length have been found, and strong asymptotic behavior is known, there are few explicit constructions for permutations of intermediate lengths. Most of these are generated from scratch using greedy algorithms. We explore a different approach here. Starting with a set of permutations with the desired coverage properties, we compute local changes to individual permutations that retain the total coverage of the set. By choosing these local changes so as to make one permutation less "essential" in maintaining the coverage of the set, our method attempts to make a permutation completely non-essential, so it can be removed without sacrificing total coverage. We develop a post-optimization method to do this and present results on sequence covering arrays and other types of permutation covering problems demonstrating that it is surprisingly effective.
ContributorsMurray, Patrick Charles (Author) / Colbourn, Charles (Thesis director) / Czygrinow, Andrzej (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2014-12
136202-Thumbnail Image.png
Description
The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques

The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques to align natural language sentences to the linearized parses of their associated knowledge representations in order to learn the meanings of individual words. The work includes proposing and analyzing an approach that can be used to learn some of the initial lexicon.
ContributorsBaldwin, Amy Lynn (Author) / Baral, Chitta (Thesis director) / Vo, Nguyen (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
137020-Thumbnail Image.png
Description
In many systems, it is difficult or impossible to measure the phase of a signal. Direct recovery from magnitude is an ill-posed problem. Nevertheless, with a sufficiently large set of magnitude measurements, it is often possible to reconstruct the original signal using algorithms that implicitly impose regularization conditions on this

In many systems, it is difficult or impossible to measure the phase of a signal. Direct recovery from magnitude is an ill-posed problem. Nevertheless, with a sufficiently large set of magnitude measurements, it is often possible to reconstruct the original signal using algorithms that implicitly impose regularization conditions on this ill-posed problem. Two such algorithms were examined: alternating projections, utilizing iterative Fourier transforms with manipulations performed in each domain on every iteration, and phase lifting, converting the problem to that of trace minimization, allowing for the use of convex optimization algorithms to perform the signal recovery. These recovery algorithms were compared on a basis of robustness as a function of signal-to-noise ratio. A second problem examined was that of unimodular polyphase radar waveform design. Under a finite signal energy constraint, the maximal energy return of a scene operator is obtained by transmitting the eigenvector of the scene Gramian associated with the largest eigenvalue. It is shown that if instead the problem is considered under a power constraint, a unimodular signal can be constructed starting from such an eigenvector that will have a greater return.
ContributorsJones, Scott Robert (Author) / Cochran, Douglas (Thesis director) / Diaz, Rodolfo (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
133339-Thumbnail Image.png
Description
Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important

Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important aspect within these records is the presence of prescription information. Existing techniques for extracting prescription information — which includes medication names, dosages, frequencies, reasons for taking, and mode of administration — from unstructured text have focused on the application of rule- and classifier-based methods. While state-of-the-art systems can be effective in extracting many types of information, they require significant effort to develop hand-crafted rules and conduct effective feature engineering. This paper presents the use of a bidirectional LSTM with CRF tagging model initialized with precomputed word embeddings for extracting prescription information from sentences without requiring significant feature engineering. The experimental results, run on the i2b2 2009 dataset, achieve an F1 macro measure of 0.8562, and scores above 0.9449 on four of the six categories, indicating significant potential for this model.
ContributorsRawal, Samarth Chetan (Author) / Baral, Chitta (Thesis director) / Anwar, Saadat (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133225-Thumbnail Image.png
Description
Speech nasality disorders are characterized by abnormal resonance in the nasal cavity. Hypernasal speech is of particular interest, characterized by an inability to prevent improper nasalization of vowels, and poor articulation of plosive and fricative consonants, and can lead to negative communicative and social consequences. It can be associated with

Speech nasality disorders are characterized by abnormal resonance in the nasal cavity. Hypernasal speech is of particular interest, characterized by an inability to prevent improper nasalization of vowels, and poor articulation of plosive and fricative consonants, and can lead to negative communicative and social consequences. It can be associated with a range of conditions, including cleft lip or palate, velopharyngeal dysfunction (a physical or neurological defective closure of the soft palate that regulates resonance between the oral and nasal cavity), dysarthria, or hearing impairment, and can also be an early indicator of developing neurological disorders such as ALS. Hypernasality is typically scored perceptually by a Speech Language Pathologist (SLP). Misdiagnosis could lead to inadequate treatment plans and poor treatment outcomes for a patient. Also, for some applications, particularly screening for early neurological disorders, the use of an SLP is not practical. Hence this work demonstrates a data-driven approach to objective assessment of hypernasality, through the use of Goodness of Pronunciation features. These features capture the overall precision of articulation of speaker on a phoneme-by-phoneme basis, allowing demonstrated models to achieve a Pearson correlation coefficient of 0.88 on low-nasality speakers, the population of most interest for this sort of technique. These results are comparable to milestone methods in this domain.
ContributorsSaxon, Michael Stephen (Author) / Berisha, Visar (Thesis director) / McDaniel, Troy (Committee member) / Electrical Engineering Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135056-Thumbnail Image.png
Description
In this paper, I will show that news headlines of global events can predict changes in stock price by using Machine Learning and eight years of data from r/WorldNews, a popular forum on Reddit.com. My data is confined to the top 25 daily posts on the forum, and due to

In this paper, I will show that news headlines of global events can predict changes in stock price by using Machine Learning and eight years of data from r/WorldNews, a popular forum on Reddit.com. My data is confined to the top 25 daily posts on the forum, and due to the implicit filtering mechanism in the online community, these 25 posts are representative of the most popular news headlines and influential global events of the day. Hence, these posts shine a light on how large-scale social and political events affect the stock market. Using a Logistic Regression and a Naive Bayes classifier, I am able to predict with approximately 85% accuracy a binary change in stock price using term-feature vectors gathered from the news headlines. The accuracy, precision and recall results closely rival the best models in this field of research. In addition to the results, I will also describe the mathematical underpinnings of the two models; preceded by a general investigation of the intersection between the multiple academic disciplines related to this project. These range from social to computer science and from statistics to philosophy. The goal of this additional discussion is to further illustrate the interdisciplinary nature of the research and hopefully inspire a non-monolithic mindset when further investigations are pursued.
Created2016-12
134914-Thumbnail Image.png
Description
Many forms of programmable matter have been proposed for various tasks. We use an abstract model of self-organizing particle systems for programmable matter which could be used for a variety of applications, including smart paint and coating materials for engineering or programmable cells for medical uses. Previous research using this

Many forms of programmable matter have been proposed for various tasks. We use an abstract model of self-organizing particle systems for programmable matter which could be used for a variety of applications, including smart paint and coating materials for engineering or programmable cells for medical uses. Previous research using this model has focused on shape formation and other spatial configuration problems, including line formation, compression, and coating. In this work we study foundational computational tasks that exceed the capabilities of the individual constant memory particles described by the model. These tasks represent new ways to use these self-organizing systems, which, in conjunction with previous shape and configuration work, make the systems useful for a wider variety of tasks. We present an implementation of a counter using a line of particles, which makes it possible for the line of particles to count to and store values much larger than their individual capacities. We then present an algorithm that takes a matrix and a vector as input and then sets up and uses a rectangular block of particles to compute the matrix-vector multiplication. This setup also utilizes the counter implementation to store the resulting vector from the matrix-vector multiplication. Operations such as counting and matrix multiplication can leverage the distributed and dynamic nature of the self-organizing system to be more efficient and adaptable than on traditional linear computing hardware. Such computational tools also give the systems more power to make complex decisions when adapting to new situations or to analyze the data they collect, reducing reliance on a central controller for setup and output processing. Finally, we demonstrate an application of similar types of computations with self-organizing systems to image processing, with an implementation of an image edge detection algorithm.
ContributorsPorter, Alexandra Marie (Author) / Richa, Andrea (Thesis director) / Xue, Guoliang (Committee member) / School of Music (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135739-Thumbnail Image.png
Description
Many programmable matter systems have been proposed and realized recently, each often tailored toward a particular task or physical setting. In our work on self-organizing particle systems, we abstract away from specific settings and instead describe programmable matter as a collection of simple computational elements (to be referred to as

Many programmable matter systems have been proposed and realized recently, each often tailored toward a particular task or physical setting. In our work on self-organizing particle systems, we abstract away from specific settings and instead describe programmable matter as a collection of simple computational elements (to be referred to as particles) with limited computational power that each perform fully distributed, local, asynchronous algorithms to solve system-wide problems of movement, configuration, and coordination. In this thesis, we focus on the compression problem, in which the particle system gathers as tightly together as possible, as in a sphere or its equivalent in the presence of some underlying geometry. While there are many ways to formalize what it means for a particle system to be compressed, we address three different notions of compression: (1) local compression, in which each individual particle utilizes local rules to create an overall convex structure containing no holes, (2) hole elimination, in which the particle system seeks to detect and eliminate any holes it contains, and (3) alpha-compression, in which the particle system seeks to shrink its perimeter to be within a constant factor of the minimum possible value. We analyze the behavior of each of these algorithms, examining correctness and convergence where appropriate. In the case of the Markov Chain Algorithm for Compression, we provide improvements to the original bounds for the bias parameter lambda which influences the system to either compress or expand. Lastly, we briefly discuss contributions to the problem of leader election--in which a particle system elects a single leader--since it acts as an important prerequisite for compression algorithms that use a predetermined seed particle.
ContributorsDaymude, Joshua Jungwoo (Author) / Richa, Andrea (Thesis director) / Kierstead, Henry (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148333-Thumbnail Image.png
Description

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal why interpretations are necessary to map the quantum world onto our classical world. We then introduce the Copenhagen interpretation, and how many-worlds differs from it. From there, we dive into the concepts of entanglement and decoherence, explaining how worlds branch in an Everettian universe, and how an Everettian universe can appear as our classical observed world. From there, we attempt to answer common questions about many-worlds and discuss whether there are philosophical ramifications to believing such a theory. Finally, we look at whether the many-worlds interpretation can be proven, and why one might choose to believe it.

ContributorsSecrest, Micah (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148341-Thumbnail Image.png
Description

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the

The purpose of this paper is to provide an analysis of entanglement and the particular problems it poses for some physicists. In addition to looking at the history of entanglement and non-locality, this paper will use the Bell Test as a means for demonstrating how entanglement works, which measures the behavior of electrons whose combined internal angular momentum is zero. This paper will go over Dr. Bell's famous inequality, which shows why the process of entanglement cannot be explained by traditional means of local processes. Entanglement will be viewed initially through the Copenhagen Interpretation, but this paper will also look at two particular models of quantum mechanics, de-Broglie Bohm theory and Everett's Many-Worlds Interpretation, and observe how they explain the behavior of spin and entangled particles compared to the Copenhagen Interpretation.

ContributorsWood, Keaten Lawrence (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05