Matching Items (54)
Filtering by

Clear all filters

Description

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.

ContributorsSaldyt, Lucas P (Author) / Ben Amor, Heni (Thesis director) / Pavlic, Theodore (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148075-Thumbnail Image.png
Description

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work.

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work. The team’s work primarily focused on recruitment efforts at Arizona State University, but the concept can be modified and applied at other post-secondary institutions. The initial research showed that Arizona State University’s recruitment focused on visiting the high schools of prospective students and providing campus tours to interested students. A proposed alternative solution to aid in recruitment efforts through the utilization of gaming was to create an online multiplayer game that prospective students could play from their own homes. The basic premise of the game is that one player is selected to be “the Professor” while the other players are part of “the Students.” To complete the game, the Students must complete a set of tasks while the Professor applies various obstacles to prevent the Students from winning. When a Student completes their objectives, they win and the game ends. The game was created using Unity. The group has completed a proof-of-concept of the proposed game and worked to advertise and market the game to students via social media. The team’s efforts have gained traction, and the group continues to work to gain traction and bring the idea to more prospective students.

ContributorsDong, Edmund Engsun (Co-author) / Ouellette, Abigail (Co-author) / Cole, Tyler (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147926-Thumbnail Image.png
Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsLobo, Ian (Co-author) / Koleber, Keith (Co-author) / Markabawi, Jah (Co-author) / Masud, Abdullah (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136312-Thumbnail Image.png
Description
While not officially recognized as an addictive activity by the Diagnostic and Statistical Manual of Mental Disorders, video game addiction has well-documented resources pointing to its effects on physiological and mental health for both addict and those close to the addict. With the rise of eSports, treating video game addiction

While not officially recognized as an addictive activity by the Diagnostic and Statistical Manual of Mental Disorders, video game addiction has well-documented resources pointing to its effects on physiological and mental health for both addict and those close to the addict. With the rise of eSports, treating video game addiction has become trickier as a passionate and growing fan base begins to act as a culture not unlike traditional sporting. These concerns call for a better understanding of what constitutes a harmful addiction to video games as its heavy practice becomes more financially viable and accepted into mainstream culture.
ContributorsGohil, Abhishek Bhagirathsinh (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
136202-Thumbnail Image.png
Description
The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques

The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques to align natural language sentences to the linearized parses of their associated knowledge representations in order to learn the meanings of individual words. The work includes proposing and analyzing an approach that can be used to learn some of the initial lexicon.
ContributorsBaldwin, Amy Lynn (Author) / Baral, Chitta (Thesis director) / Vo, Nguyen (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
135758-Thumbnail Image.png
Description
Food safety is vital to the well-being of society; therefore, it is important to inspect food products to ensure minimal health risks are present. A crucial phase of food inspection is the identification of foreign particles found in the sample, such as insect body parts. The presence of certain species

Food safety is vital to the well-being of society; therefore, it is important to inspect food products to ensure minimal health risks are present. A crucial phase of food inspection is the identification of foreign particles found in the sample, such as insect body parts. The presence of certain species of insects, especially storage beetles, is a reliable indicator of possible contamination during storage and food processing. However, the current approach to identifying species is visual examination by human analysts; this method is rather subjective and time-consuming. Furthermore, confident identification requires extensive experience and training. To aid this inspection process, we have developed in collaboration with FDA analysts some image analysis-based machine intelligence to achieve species identification with up to 90% accuracy. The current project is a continuation of this development effort. Here we present an image analysis environment that allows practical deployment of the machine intelligence on computers with limited processing power and memory. Using this environment, users can prepare input sets by selecting images for analysis, and inspect these images through the integrated pan, zoom, and color analysis capabilities. After species analysis, the results panel allows the user to compare the analyzed images with referenced images of the proposed species. Further additions to this environment should include a log of previously analyzed images, and eventually extend to interaction with a central cloud repository of images through a web-based interface. Additional issues to address include standardization of image layout, extension of the feature-extraction algorithm, and utilizing image classification to build a central search engine for widespread usage.
ContributorsMartin, Daniel Luis (Author) / Ahn, Gail-Joon (Thesis director) / Doupé, Adam (Committee member) / Xu, Joshua (Committee member) / Computer Science and Engineering Program (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135605-Thumbnail Image.png
Description
An application called "Productivity Heatmap" was created with this project with the goal of allowing users to track how productive they are over the course of a day and week, input through scheduled prompts separated by 30 minutes to 4 hours, depending on preference. The result is a heat ma

An application called "Productivity Heatmap" was created with this project with the goal of allowing users to track how productive they are over the course of a day and week, input through scheduled prompts separated by 30 minutes to 4 hours, depending on preference. The result is a heat map colored according to a user's productivity at particular times of each day during the week. The aim is to allow a user to have a visualization on when he or she is best able to be productive, given that every individual has different habits and life patterns. This application was made completely in Google's Android Studio environment using Java and XML, with SQLite being used for database management. The application runs on any Android device, and was designed to be a balance of providing useful information to a user while maintaining an attractive and intuitive interface. This thesis explores the creation of a functional mobile application for mass distribution, with a particular set of end users in mind, namely college students. Many challenges in the form of learning a new development environment were encountered and overcome, as explained in the report. The application created is a core functionality proof-of-concept of a much larger personal project in creating a versatile and useful mobile application for student use. The principles covered are the creation of a mobile application, meeting requirements specified by others, and investigating the interest generated by such a concept. Beyond this thesis, testing will be done, and future enhancements will be made for mass-market consumption.
ContributorsWeser, Matthew Paul (Author) / Nelson, Brian (Thesis director) / Balasooriya, Janaka (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135955-Thumbnail Image.png
Description
Instead of providing the illusion of agency to a reader via a tree or network of prewritten, branching paths, an interactive story should treat the reader as a player who has meaningful influence on the story. An interactive story can accomplish this task by giving the player a large toolset

Instead of providing the illusion of agency to a reader via a tree or network of prewritten, branching paths, an interactive story should treat the reader as a player who has meaningful influence on the story. An interactive story can accomplish this task by giving the player a large toolset for expression in the plot. LudoNarrare, an engine for interactive storytelling, puts "verbs" in this toolset. Verbs are contextual choices of action given to agents in a story that result in narrative events. This paper begins with an analysis and statement of the problem of creating interactive stories. From here, various attempts to solve this problem, ranging from commercial video games to academic research, are given a brief overview to give context to what paths have already been forged. With the background set, the model of interactive storytelling that the research behind LudoNarrare led to is exposed in detail. The section exploring this model contains explanations on what storyworlds are and how they are structured. It then discusses the way these storyworlds can be brought to life. The exposition on the LudoNarrare model finally wraps up by considering the way storyworlds created around this model can be designed. After the concepts of LudoNarrare are explored in the abstract, the story of the engine's research and development and the specifics of its software implementation are given. With LudoNarrare fully explained, the focus then turns to plans for evaluation of its quality in terms of entertainment value, robustness, and performance. To conclude, possible further paths of investigation for LudoNarrare and its model of interactive storytelling are proposed to inspire those who wish to continue in the spirit of the project.
ContributorsStark, Joshua Matthew (Author) / VanLehn, Kurt (Thesis director) / Wetzel, Jon (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
137137-Thumbnail Image.png
Description
Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect

Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect of the project. The players interact on a turn-by-turn basis by speaking commands into the computer's microphone. When the computer recognizes a command, it will respond accordingly by having the player's unit perform an action on screen.
ContributorsNguyen, Jordan Ngoc (Author) / Kobayashi, Yoshihiro (Thesis director) / Maciejewski, Ross (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
137149-Thumbnail Image.png
Description
The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on the 2D art and visual aspects of the project. There

The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on the 2D art and visual aspects of the project. There are different sprites for the player's army units and icons within the game. The game also has a grid for easy unit placement.
ContributorsHsia, Allen (Author) / Kobayashi, Yoshihiro (Thesis director) / Maciejewski, Ross (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05