Matching Items (11)
Filtering by

Clear all filters

136785-Thumbnail Image.png
Description
This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of

This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of a chair to provide vibrotactile stimulation in the context of a dyadic (one-on-one) interaction across a table. This work explores the design of spatiotemporal vibration patterns that can be used to convey the basic building blocks of facial movements according to the Facial Action Unit Coding System. A behavioral study was conducted to explore the factors that influence the naturalness of conveying affect using vibrotactile cues.
ContributorsBala, Shantanu (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
133186-Thumbnail Image.png
Description
Most collegiate organizations aim to unite students with common interests and engage them in a like-minded community of peers. A significant sub-group of these organizations are classified under sororities and fraternities and commonly known as Greek Life. Member involvement is a crucial element for Greek Life as participation in philanthropic

Most collegiate organizations aim to unite students with common interests and engage them in a like-minded community of peers. A significant sub-group of these organizations are classified under sororities and fraternities and commonly known as Greek Life. Member involvement is a crucial element for Greek Life as participation in philanthropic events, chapter meetings, rituals, recruitment events, etc. often reflects the state of the organization. The purpose of this project is to create a web application that allows members of an Arizona State University sorority to view their involvement activity as outlined by the chapter. Maintaining the balance between academics, sleep, a social life, and extra-curricular activities/organizations can be difficult for college students. With the use of this website, members can view their attendances, absences, and study/volunteer hours to know their progress towards the involvement requirements set by the chapter. This knowledge makes it easier to plan schedules and alleviate some stress associated with the time-management of sorority events, assignments/homework, and studying. It is also designed for the sorority leadership to analyze and track the participation of the membership. Members can submit their participation in events, making the need for manual counting and calculations disappear. The website administrator(s) can view and approve data from any and all members. The website was developed using HTML, CSS, and JavaScript in conjunction with Firebase for the back-end database. Human-Computer Interaction (HCI) tools and techniques were used throughout the development process to aide in prototyping, visual design, and evaluation. The front-end appearance of the website was designed to mimic the data manipulation used in the current involvement tracking system while presenting it in a more personalized and aesthetically pleasing manner.
ContributorsKolker, Madysen (Author) / McDaniel, Troy (Thesis director) / Tadayon, Arash (Committee member) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133225-Thumbnail Image.png
Description
Speech nasality disorders are characterized by abnormal resonance in the nasal cavity. Hypernasal speech is of particular interest, characterized by an inability to prevent improper nasalization of vowels, and poor articulation of plosive and fricative consonants, and can lead to negative communicative and social consequences. It can be associated with

Speech nasality disorders are characterized by abnormal resonance in the nasal cavity. Hypernasal speech is of particular interest, characterized by an inability to prevent improper nasalization of vowels, and poor articulation of plosive and fricative consonants, and can lead to negative communicative and social consequences. It can be associated with a range of conditions, including cleft lip or palate, velopharyngeal dysfunction (a physical or neurological defective closure of the soft palate that regulates resonance between the oral and nasal cavity), dysarthria, or hearing impairment, and can also be an early indicator of developing neurological disorders such as ALS. Hypernasality is typically scored perceptually by a Speech Language Pathologist (SLP). Misdiagnosis could lead to inadequate treatment plans and poor treatment outcomes for a patient. Also, for some applications, particularly screening for early neurological disorders, the use of an SLP is not practical. Hence this work demonstrates a data-driven approach to objective assessment of hypernasality, through the use of Goodness of Pronunciation features. These features capture the overall precision of articulation of speaker on a phoneme-by-phoneme basis, allowing demonstrated models to achieve a Pearson correlation coefficient of 0.88 on low-nasality speakers, the population of most interest for this sort of technique. These results are comparable to milestone methods in this domain.
ContributorsSaxon, Michael Stephen (Author) / Berisha, Visar (Thesis director) / McDaniel, Troy (Committee member) / Electrical Engineering Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133018-Thumbnail Image.png
Description
This paper introduces MisophoniAPP, a new website for managing misophonia. It will briefly discuss the nature of this chronic syndrome, which is the experience of reacting strongly to certain everyday sounds, or “triggers”. Various forms of Cognitive Behavioral Therapy and the Neural Repatterning Technique are currently used to treat misophonia,

This paper introduces MisophoniAPP, a new website for managing misophonia. It will briefly discuss the nature of this chronic syndrome, which is the experience of reacting strongly to certain everyday sounds, or “triggers”. Various forms of Cognitive Behavioral Therapy and the Neural Repatterning Technique are currently used to treat misophonia, but they are not guaranteed to work for every patient. Few apps exist to help patients with their therapy, so this paper describes the design and creation of a new website that combines exposure therapy,
relaxation, and gamification to help patients alleviate their misophonic reflexes.
ContributorsNoziglia, Rachel Elisabeth (Author) / McDaniel, Troy (Thesis director) / Anderson, Derrick (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171505-Thumbnail Image.png
Description
The impact of Artificial Intelligence (AI) has increased significantly in daily life. AI is taking big strides towards moving into areas of life that are critical such as healthcare but, also into areas such as entertainment and leisure. Deep neural networks have been pivotal in making all these advancements possible.

The impact of Artificial Intelligence (AI) has increased significantly in daily life. AI is taking big strides towards moving into areas of life that are critical such as healthcare but, also into areas such as entertainment and leisure. Deep neural networks have been pivotal in making all these advancements possible. But, a well-known problem with deep neural networks is the lack of explanations for the choices it makes. To combat this, several methods have been tried in the field of research. One example of this is assigning rankings to the individual features and how influential they are in the decision-making process. In contrast a newer class of methods focuses on Concept Activation Vectors (CAV) which focus on extracting higher-level concepts from the trained model to capture more information as a mixture of several features and not just one. The goal of this thesis is to employ concepts in a novel domain: to explain how a deep learning model uses computer vision to classify music into different genres. Due to the advances in the field of computer vision with deep learning for classification tasks, it is rather a standard practice now to convert an audio clip into corresponding spectrograms and use those spectrograms as image inputs to the deep learning model. Thus, a pre-trained model can classify the spectrogram images (representing songs) into musical genres. The proposed explanation system called “Why Pop?” tries to answer certain questions about the classification process such as what parts of the spectrogram influence the model the most, what concepts were extracted and how are they different for different classes. These explanations aid the user gain insights into the model’s learnings, biases, and the decision-making process.
ContributorsSharma, Shubham (Author) / Bryan, Chris (Thesis advisor) / McDaniel, Troy (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2022
171531-Thumbnail Image.png
Description
The reality of smart cities is here and now. The issues of data privacy in tech applications are apparent in smart cities. Privacy as an issue raised by many and addressed by few remains critical for smart cities’ success. It is the common responsibility of smart cities, tech application makers,

The reality of smart cities is here and now. The issues of data privacy in tech applications are apparent in smart cities. Privacy as an issue raised by many and addressed by few remains critical for smart cities’ success. It is the common responsibility of smart cities, tech application makers, and users to embark on the journey to solutions. Privacy is an individual problem that smart cities need to provide a collective solution for. The research focuses on understanding users’ data privacy preferences, what information they consider private, and what they need to protect. The research identifies the data security loopholes, data privacy roadblocks, and common opportunities for change to implement a proactive privacy-driven tech solution necessary to address and resolve tech-induced data privacy concerns among citizens. This dissertation aims at addressing the issue of data privacy in tech applications based on known methodologies to address the concerns they allow. Through this research, a data privacy survey on tech applications was conducted, and the results reveal users’ desires to become a part of the solution by becoming aware and taking control of their data privacy while using tech applications. So, this dissertation gives an overview of the data privacy issues in tech, discusses available data privacy basis, elaborates on the different steps needed to create a robust remedy to data privacy concerns in enabling users’ awareness and control, and proposes two privacy applications one as a data privacy awareness solution and the other as a representation of the privacy control framework to address data privacy concerns in smart cities.
ContributorsMusafiri Mimo, Edgard (Author) / McDaniel, Troy (Thesis advisor) / Michael, Katina (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2022
158117-Thumbnail Image.png
Description
Visual object recognition has achieved great success with advancements in deep learning technologies. Notably, the existing recognition models have gained human-level performance on many of the recognition tasks. However, these models are data hungry, and their performance is constrained by the amount of training data. Inspired by the human ability

Visual object recognition has achieved great success with advancements in deep learning technologies. Notably, the existing recognition models have gained human-level performance on many of the recognition tasks. However, these models are data hungry, and their performance is constrained by the amount of training data. Inspired by the human ability to recognize object categories based on textual descriptions of objects and previous visual knowledge, the research community has extensively pursued the area of zero-shot learning. In this area of research, machine vision models are trained to recognize object categories that are not observed during the training process. Zero-shot learning models leverage textual information to transfer visual knowledge from seen object categories in order to recognize unseen object categories.

Generative models have recently gained popularity as they synthesize unseen visual features and convert zero-shot learning into a classical supervised learning problem. These generative models are trained using seen classes and are expected to implicitly transfer the knowledge from seen to unseen classes. However, their performance is stymied by overfitting towards seen classes, which leads to substandard performance in generalized zero-shot learning. To address this concern, this dissertation proposes a novel generative model that leverages the semantic relationship between seen and unseen categories and explicitly performs knowledge transfer from seen categories to unseen categories. Experiments were conducted on several benchmark datasets to demonstrate the efficacy of the proposed model for both zero-shot learning and generalized zero-shot learning. The dissertation also provides a unique Student-Teacher based generative model for zero-shot learning and concludes with future research directions in this area.
ContributorsVyas, Maunil Rohitbhai (Author) / Panchanathan, Sethuraman (Thesis advisor) / Venkateswara, Hemanth (Thesis advisor) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020
158120-Thumbnail Image.png
Description
Humans perceive the environment using multiple modalities like vision, speech (language), touch, taste, and smell. The knowledge obtained from one modality usually complements the other. Learning through several modalities helps in constructing an accurate model of the environment. Most of the current vision and language models are modality-specific and, in

Humans perceive the environment using multiple modalities like vision, speech (language), touch, taste, and smell. The knowledge obtained from one modality usually complements the other. Learning through several modalities helps in constructing an accurate model of the environment. Most of the current vision and language models are modality-specific and, in many cases, extensively use deep-learning based attention mechanisms for learning powerful representations. This work discusses the role of attention in associating vision and language for generating shared representation. Language Image Transformer (LIT) is proposed for learning multi-modal representations of the environment. It uses a training objective based on Contrastive Predictive Coding (CPC) to maximize the Mutual Information (MI) between the visual and linguistic representations. It learns the relationship between the modalities using the proposed cross-modal attention layers. It is trained and evaluated using captioning datasets, MS COCO, and Conceptual Captions. The results and the analysis offers a perspective on the use of Mutual Information Maximisation (MIM) for generating generalizable representations across multiple modalities.
ContributorsRamakrishnan, Raghavendran (Author) / Panchanathan, Sethuraman (Thesis advisor) / Venkateswara, Hemanth Kumar (Thesis advisor) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020
158127-Thumbnail Image.png
Description
Over the past decade, advancements in neural networks have been instrumental in achieving remarkable breakthroughs in the field of computer vision. One of the applications is in creating assistive technology to improve the lives of visually impaired people by making the world around them more accessible. A lot of research

Over the past decade, advancements in neural networks have been instrumental in achieving remarkable breakthroughs in the field of computer vision. One of the applications is in creating assistive technology to improve the lives of visually impaired people by making the world around them more accessible. A lot of research in convolutional neural networks has led to human-level performance in different vision tasks including image classification, object detection, instance segmentation, semantic segmentation, panoptic segmentation and scene text recognition. All the before mentioned tasks, individually or in combination, have been used to create assistive technologies to improve accessibility for the blind.

This dissertation outlines various applications to improve accessibility and independence for visually impaired people during shopping by helping them identify products in retail stores. The dissertation includes the following contributions; (i) A dataset containing images of breakfast-cereal products and a classifier using a deep neural (ResNet) network; (ii) A dataset for training a text detection and scene-text recognition model; (iii) A model for text detection and scene-text recognition to identify product images using a user-controlled camera; (iv) A dataset of twenty thousand products with product information and related images that can be used to train and test a system designed to identify products.
ContributorsPatel, Akshar (Author) / Panchanathan, Sethuraman (Thesis advisor) / Venkateswara, Hemanth (Thesis advisor) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020
158259-Thumbnail Image.png
Description
In the last decade deep learning based models have revolutionized machine learning and computer vision applications. However, these models are data-hungry and training them is a time-consuming process. In addition, when deep neural networks are updated to augment their prediction space with new data, they run into the problem of

In the last decade deep learning based models have revolutionized machine learning and computer vision applications. However, these models are data-hungry and training them is a time-consuming process. In addition, when deep neural networks are updated to augment their prediction space with new data, they run into the problem of catastrophic forgetting, where the model forgets previously learned knowledge as it overfits to the newly available data. Incremental learning algorithms enable deep neural networks to prevent catastrophic forgetting by retaining knowledge of previously observed data while also learning from newly available data.

This thesis presents three models for incremental learning; (i) Design of an algorithm for generative incremental learning using a pre-trained deep neural network classifier; (ii) Development of a hashing based clustering algorithm for efficient incremental learning; (iii) Design of a student-teacher coupled neural network to distill knowledge for incremental learning. The proposed algorithms were evaluated using popular vision datasets for classification tasks. The thesis concludes with a discussion about the feasibility of using these techniques to transfer information between networks and also for incremental learning applications.
ContributorsPatil, Rishabh (Author) / Venkateswara, Hemanth (Thesis advisor) / Panchanathan, Sethuraman (Thesis advisor) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2020