Matching Items (18)
Filtering by

Clear all filters

151793-Thumbnail Image.png
Description
Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to

Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to create high level motion plans to control robots in the field by converting a visual representation of the motion/task plan into a Linear Temporal Logic (LTL) specification. The visual interface is built on the Android tablet platform and provides functionality to create task plans through a set of well defined gestures and on screen controls. It uses the notion of waypoints to quickly and efficiently describe the motion plan and enables a variety of complex Linear Temporal Logic specifications to be described succinctly and intuitively by the user without the need for the knowledge and understanding of LTL specification. Thus, it opens avenues for its use by personnel in military, warehouse management, and search and rescue missions. This thesis describes the construction of LTL for various scenarios used for robot navigation using the visual interface developed and leverages the use of existing LTL based motion planners to carry out the task plan by a robot.
ContributorsSrinivas, Shashank (Author) / Fainekos, Georgios (Thesis advisor) / Baral, Chitta (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2013
151653-Thumbnail Image.png
Description
Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling

Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling language in order to enhance expressivity, such as incorporating aggregates and interfaces with ontologies. Also, in order to overcome the grounding bottleneck of computation in ASP, there are increasing interests in integrating ASP with other computing paradigms, such as Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). Due to the non-monotonic nature of the ASP semantics, such enhancements turned out to be non-trivial and the existing extensions are not fully satisfactory. We observe that one main reason for the difficulties rooted in the propositional semantics of ASP, which is limited in handling first-order constructs (such as aggregates and ontologies) and functions (such as constraint variables in CP and SMT) in natural ways. This dissertation presents a unifying view on these extensions by viewing them as instances of formulas with generalized quantifiers and intensional functions. We extend the first-order stable model semantics by by Ferraris, Lee, and Lifschitz to allow generalized quantifiers, which cover aggregate, DL-atoms, constraints and SMT theory atoms as special cases. Using this unifying framework, we study and relate different extensions of ASP. We also present a tight integration of ASP with SMT, based on which we enhance action language C+ to handle reasoning about continuous changes. Our framework yields a systematic approach to study and extend non-monotonic languages.
ContributorsMeng, Yunsong (Author) / Lee, Joohyung (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Fainekos, Georgios (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2013
151780-Thumbnail Image.png
Description
Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona State University. The end product of this thesis is creation

Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona State University. The end product of this thesis is creation of a software solution which can be used in the academia and industry for research in cyber physical systems related applications. The major features of the project are: creating a modular system for motion planning, use of Robot Operating System (ROS), use of triangulation for environment decomposition and using stargazer sensor for localization. The project is built on an open source software called ROS which provides an environment where it is very easy to integrate different modules be it software or hardware on a Linux based platform. Use of ROS implies the project or its modules can be adapted quickly for different applications as the need arises. The final software package created and tested takes a data file as its input which contains the LTL specifications, a symbols list used in the LTL and finally the environment polygon data containing real world coordinates for all polygons and also information on neighbors and parents of each polygon. The software package successfully ran the experiment of coverage, reachability with avoidance and sequencing.
ContributorsPandya, Parth (Author) / Fainekos, Georgios (Thesis advisor) / Dasgupta, Partha (Committee member) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2013
149452-Thumbnail Image.png
Description
Cyber Physical Systems (CPSs) are systems comprising of computational systems that interact with the physical world to perform sensing, communication, computation and actuation. Common examples of these systems include Body Area Networks (BANs), Autonomous Vehicles (AVs), Power Distribution Systems etc. The close coupling between cyber and physical worlds in a

Cyber Physical Systems (CPSs) are systems comprising of computational systems that interact with the physical world to perform sensing, communication, computation and actuation. Common examples of these systems include Body Area Networks (BANs), Autonomous Vehicles (AVs), Power Distribution Systems etc. The close coupling between cyber and physical worlds in a CPS manifests in two types of interactions between computing systems and the physical world: intentional and unintentional. Unintentional interactions result from the physical characteristics of the computing systems and often cause harm to the physical world, if the computing nodes are close to each other, these interactions may overlap thereby increasing the chances of causing a Safety hazard. Similarly, due to mobile nature of computing nodes in a CPS planned and unplanned interactions with the physical world occur. These interactions represent the behavior of a computing node while it is following a planned path and during faulty operations. Both of these interactions change over time due to the dynamics (motion) of the computing node and may overlap thereby causing harm to the physical world. Lack of proper modeling and analysis frameworks for these systems causes system designers to use ad-hoc techniques thereby further increasing their design and development time. The thesis addresses these problems by taking a holistic approach to model Computational, Physical and Cyber Physical Interactions (CPIs) aspects of a CPS and proposes modeling constructs for them. These constructs are analyzed using a safety analysis algorithm developed as part of the thesis. The algorithm computes the intersection of CPIs for both mobile as well as static computing nodes and determines the safety of the physical system. A framework is developed by extending AADL to support these modeling constructs; the safety analysis algorithm is implemented as OSATE plug-in. The applicability of the proposed approach is demonstrated by considering the safety of human tissue during the operations of BAN, and the safety of passengers traveling in an Autonomous Vehicle.
ContributorsKandula, Sailesh Umamaheswara (Author) / Gupta, Sandeep (Thesis advisor) / Lee, Yann Hang (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2010
132967-Thumbnail Image.png
Description
Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that,

Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that, given an abstract problem state, predicts both (i) the best action to be taken from that state and (ii) the generalized “role” of the object being manipulated. The neural network was tested on two classical planning domains: the blocks world domain and the logistic domain. Results indicate that neural networks are capable of making such
predictions with high accuracy, indicating a promising new framework for approaching generalized planning problems.
ContributorsNakhleh, Julia Blair (Author) / Srivastava, Siddharth (Thesis director) / Fainekos, Georgios (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133211-Thumbnail Image.png
Description
This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term

This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term memory. To address this problem, we proposed that using a Neural Turing Machine (NTM) framework adds long-term memory to the system. We evaluated this approach by using it to master a palindrome task. The network was able to infer how to create a palindrome with 100% accuracy. Since the NTM structure proves useful, we aim to use it in the given scenarios to improve the navigation safety and accuracy of a simulated autonomous car.
ContributorsMartin, Sarah (Author) / Ben Amor, Hani (Thesis director) / Fainekos, Georgios (Committee member) / Barrett, The Honors College (Contributor)
Created2018-05
171513-Thumbnail Image.png
Description
Automated driving systems (ADS) have come a long way since their inception. It is clear that these systems rely heavily on stochastic deep learning techniques for perception, planning, and prediction, as it is impossible to construct every possible driving scenario to generate driving policies. Moreover, these systems need to be

Automated driving systems (ADS) have come a long way since their inception. It is clear that these systems rely heavily on stochastic deep learning techniques for perception, planning, and prediction, as it is impossible to construct every possible driving scenario to generate driving policies. Moreover, these systems need to be trained and validated extensively on typical and abnormal driving situations before they can be trusted with human life. However, most publicly available driving datasets only consist of typical driving behaviors. On the other hand, there is a plethora of videos available on the internet that capture abnormal driving scenarios, but they are unusable for ADS training or testing as they lack important information such as camera calibration parameters, and annotated vehicle trajectories. This thesis proposes a new toolbox, DeepCrashTest-V2, that is capable of reconstructing high-quality simulations from monocular dashcam videos found on the internet. The toolbox not only estimates the crucial parameters such as camera calibration, ego-motion, and surrounding road user trajectories but also creates a virtual world in Car Learning to Act (CARLA) using data from OpenStreetMaps to simulate the estimated trajectories. The toolbox is open-source and is made available in the form of a python package on GitHub at https://github.com/C-Aniruddh/deepcrashtest_v2.
ContributorsChandratre, Aniruddh Vinay (Author) / Fainekos, Georgios (Thesis advisor) / Ben Amor, Hani (Thesis advisor) / Pedrielli, Giulia (Committee member) / Arizona State University (Publisher)
Created2022
161988-Thumbnail Image.png
Description
Autonomous Vehicles (AV) are inevitable entities in future mobility systems thatdemand safety and adaptability as two critical factors in replacing/assisting human drivers. Safety arises in defining, standardizing, quantifying, and monitoring requirements for all autonomous components. Adaptability, on the other hand, involves efficient handling of uncertainty and inconsistencies in models and data. First, I

Autonomous Vehicles (AV) are inevitable entities in future mobility systems thatdemand safety and adaptability as two critical factors in replacing/assisting human drivers. Safety arises in defining, standardizing, quantifying, and monitoring requirements for all autonomous components. Adaptability, on the other hand, involves efficient handling of uncertainty and inconsistencies in models and data. First, I address safety by presenting a search-based test-case generation framework that can be used in training and testing deep-learning components of AV. Next, to address adaptability, I propose a framework based on multi-valued linear temporal logic syntax and semantics that allows autonomous agents to perform model-checking on systems with uncertainties. The search-based test-case generation framework provides safety assurance guarantees through formalizing and monitoring Responsibility Sensitive Safety (RSS) rules. I use the RSS rules in signal temporal logic as qualification specifications for monitoring and screening the quality of generated test-drive scenarios. Furthermore, to extend the existing temporal-based formal languages’ expressivity, I propose a new spatio-temporal perception logic that enables formalizing qualification specifications for perception systems. All-in-one, my test-generation framework can be used for reasoning about the quality of perception, prediction, and decision-making components in AV. Finally, my efforts resulted in publicly available software. One is an offline monitoring algorithm based on the proposed logic to reason about the quality of perception systems. The other is an optimal planner (model checker) that accepts mission specifications and model descriptions in the form of multi-valued logic and multi-valued sets, respectively. My monitoring framework is distributed with the publicly available S-TaLiRo and Sim-ATAV tools.
ContributorsHekmatnejad, Mohammad (Author) / Fainekos, Georgios (Thesis advisor) / Deshmukh, Jyotirmoy V (Committee member) / Karam, Lina (Committee member) / Pedrielli, Giulia (Committee member) / Shrivastava, Aviral (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
161994-Thumbnail Image.png
Description
Imitation learning is a promising methodology for teaching robots how to physically interact and collaborate with human partners. However, successful interaction requires complex coordination in time and space, i.e., knowing what to do as well as when to do it. This dissertation introduces Bayesian Interaction Primitives, a probabilistic imitation learning

Imitation learning is a promising methodology for teaching robots how to physically interact and collaborate with human partners. However, successful interaction requires complex coordination in time and space, i.e., knowing what to do as well as when to do it. This dissertation introduces Bayesian Interaction Primitives, a probabilistic imitation learning framework which establishes a conceptual and theoretical relationship between human-robot interaction (HRI) and simultaneous localization and mapping. In particular, it is established that HRI can be viewed through the lens of recursive filtering in time and space. In turn, this relationship allows one to leverage techniques from an existing, mature field and develop a powerful new formulation which enables multimodal spatiotemporal inference in collaborative settings involving two or more agents. Through the development of exact and approximate variations of this method, it is shown in this work that it is possible to learn complex real-world interactions in a wide variety of settings, including tasks such as handshaking, cooperative manipulation, catching, hugging, and more.
ContributorsCampbell, Joseph (Author) / Ben Amor, Heni (Thesis advisor) / Fainekos, Georgios (Thesis advisor) / Yamane, Katsu (Committee member) / Kambhampati, Subbarao (Committee member) / Arizona State University (Publisher)
Created2021
193680-Thumbnail Image.png
Description
Recent advances in Artificial Intelligence (AI) have brought AI closer to laypeople than ever before. This leads to a pervasive problem: how would a user ascertain whether an AI system will be safe, reliable, or useful in a given situation? This problem becomes particularly challenging when it is considered that

Recent advances in Artificial Intelligence (AI) have brought AI closer to laypeople than ever before. This leads to a pervasive problem: how would a user ascertain whether an AI system will be safe, reliable, or useful in a given situation? This problem becomes particularly challenging when it is considered that most autonomous systems are not designed by their users; the internal software of these systems may be unavailable or difficult to understand; and the functionality of these systems may even change from initial specifications as a result of learning. To overcome these challenges, this dissertation proposes a paradigm for third-party autonomous assessment of black-box taskable AI systems. The four main desiderata of such assessment systems are: (i) interpretability: generating a description of the AI system's functionality in a language that the target user can understand; (ii) correctness: ensuring that the description of AI system's working is accurate; (iii) generalizability creating a solution approach that works well for different types of AI systems; and (iv) minimal requirements: creating an assessment system that does not place complex requirements on AI systems to support the third-party assessment, otherwise the manufacturers of AI system's might not support such an assessment. To satisfy these properties, this dissertation presents algorithms and requirements that would enable user-aligned autonomous assessment that helps the user understand the limits of a black-box AI system's safe operability. This dissertation proposes a personalized AI assessment module that discovers the high-level ``capabilities'' of an AI system with arbitrary internal planning algorithms/policies and learns an accurate symbolic description of these capabilities in terms of concepts that a user understands. Furthermore, the dissertation includes the associated theoretical results and the empirical evaluations. The results show that (i) a primitive query-response interface can enable the development of autonomous assessment modules that can derive a causally accurate user-interpretable model of the system's capabilities efficiently, and (ii) such descriptions are easier to understand and reason with for the users than the agent's primitive actions.
ContributorsVerma, Pulkit (Author) / Srivastava, Siddharth (Thesis advisor) / Cooke, Nancy (Committee member) / Fainekos, Georgios (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2024