Matching Items (39)
Filtering by

Clear all filters

133901-Thumbnail Image.png
Description
This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally

This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally accepted model of an artificial neuron is broken down into its key components and then analyzed for functionality by relating back to its biological counterpart. The role of a neuron is then described in the context of a neural network, with equal emphasis placed on how it individually undergoes training and then for an entire network. Using the technique of supervised learning, the neural network is trained with three main factors for housing price classification, including its total number of rooms, bathrooms, and square footage. Once trained with most of the generated data set, it is tested for accuracy by introducing the remainder of the data-set and observing how closely its computed output for each set of inputs compares to the target value. From a programming perspective, the artificial neuron is implemented in C so that it would be more closely tied to the operating system and therefore make the collected profiler data more precise during the program's execution. The program is designed to break down each stage of the neuron's training process into distinct functions. In addition to utilizing more functional code, the struct data type is used as the underlying data structure for this project to not only represent the neuron but for implementing the neuron's training and test data. Once fully trained, the neuron's test results are then graphed to visually depict how well the neuron learned from its sample training set. Finally, the profiler data is analyzed to describe how the program operated from a data management perspective on the software and hardware level.
ContributorsRichards, Nicholas Giovanni (Author) / Miller, Phillip (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136202-Thumbnail Image.png
Description
The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques

The objective of this research is to determine an approach for automating the learning of the initial lexicon used in translating natural language sentences to their formal knowledge representations based on lambda-calculus expressions. Using a universal knowledge representation and its associated parser, this research attempts to use word alignment techniques to align natural language sentences to the linearized parses of their associated knowledge representations in order to learn the meanings of individual words. The work includes proposing and analyzing an approach that can be used to learn some of the initial lexicon.
ContributorsBaldwin, Amy Lynn (Author) / Baral, Chitta (Thesis director) / Vo, Nguyen (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
137392-Thumbnail Image.png
Description
Despite the advancement of online tools for activities related to the core experience of taking classes on a college campus, there has been a relatively small amount of research into implementing online tools for ancillary academic resources (e.g. tutoring centers, review sessions, etc.). Previous work and a study conducted for

Despite the advancement of online tools for activities related to the core experience of taking classes on a college campus, there has been a relatively small amount of research into implementing online tools for ancillary academic resources (e.g. tutoring centers, review sessions, etc.). Previous work and a study conducted for this paper indicates that there is value in creating these online tools but that there is value in maintaining an in-person component to these services. Based on this, a system which provides personalized, easily-accessible, simple access to these services is proposed. Designs for user-centered online-tools that provides access to and interaction with tutoring centers and review sessions are described and prototypes are developed to demonstrate the application of design principles for online tools for academic services.
ContributorsBerk, Nicholas Robert (Author) / Balasooriya, Janaka (Thesis director) / Eaton, John (Committee member) / Walker, Erin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
135242-Thumbnail Image.png
Description
Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply

Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply obtaining such exploits – so an alternative approach is needed to understand what exploits an attacker will most likely purchase and how to defend against them. In this paper, we introduce a data-driven security game framework to model an attacker and provide policy recommendations to the defender. In addition to providing a formal framework and algorithms to develop strategies, we present experimental results from applying our framework, for various system configurations, on real-world exploit market data actively mined from the darknet.
ContributorsRobertson, John James (Author) / Shakarian, Paulo (Thesis director) / Doupe, Adam (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134520-Thumbnail Image.png
Description
As one of the first attempts to research multimedia platforms for older adults when learning an online photo-editing software, this study examined whether an audio only, a text only, or a combination of an audio and text tutorial would be the most effective teaching method. Elderly adults aged 65 and

As one of the first attempts to research multimedia platforms for older adults when learning an online photo-editing software, this study examined whether an audio only, a text only, or a combination of an audio and text tutorial would be the most effective teaching method. Elderly adults aged 65 and older (N-45) were randomly assigned to one of the three conditions. They first went through a training phase that utilized their assigned condition to teach five tasks within the photo-editing program, and they were then tested on how well they learned these tasks as well as a transfer task. It was predicted that the multimedia condition would increase learning efficiency, produce more successes in the transfer task, and decrease cognitive load compared to the two unimodal conditions. The multimedia condition (text and audio) had no significant effect on transfer task successes or decreases in cognitive load compared to the unimodal conditions (text only and audio only). The multimedia condition, however, did produce significantly less errors on Tasks 2, 4, and 5 than the unimodal conditions. This suggests that redundancy principles may play an important role when designing learning platforms for elderly users, and that age needs to be considered as an additional factor during the technological design process.
ContributorsSwieczkowski, Hannah Elizabeth (Author) / Atkinson, Robert (Thesis director) / Chavez, Helen (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132967-Thumbnail Image.png
Description
Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that,

Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that, given an abstract problem state, predicts both (i) the best action to be taken from that state and (ii) the generalized “role” of the object being manipulated. The neural network was tested on two classical planning domains: the blocks world domain and the logistic domain. Results indicate that neural networks are capable of making such
predictions with high accuracy, indicating a promising new framework for approaching generalized planning problems.
ContributorsNakhleh, Julia Blair (Author) / Srivastava, Siddharth (Thesis director) / Fainekos, Georgios (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133339-Thumbnail Image.png
Description
Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important

Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important aspect within these records is the presence of prescription information. Existing techniques for extracting prescription information — which includes medication names, dosages, frequencies, reasons for taking, and mode of administration — from unstructured text have focused on the application of rule- and classifier-based methods. While state-of-the-art systems can be effective in extracting many types of information, they require significant effort to develop hand-crafted rules and conduct effective feature engineering. This paper presents the use of a bidirectional LSTM with CRF tagging model initialized with precomputed word embeddings for extracting prescription information from sentences without requiring significant feature engineering. The experimental results, run on the i2b2 2009 dataset, achieve an F1 macro measure of 0.8562, and scores above 0.9449 on four of the six categories, indicating significant potential for this model.
ContributorsRawal, Samarth Chetan (Author) / Baral, Chitta (Thesis director) / Anwar, Saadat (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134133-Thumbnail Image.png
Description
Hackathons are 24-36 hour events where participants are encouraged to learn, collaborate, and build technological inventions with leaders, companies, and peers in the tech community. Hackathons have been sweeping the nation in the recent years especially at the collegiate level; however, there is no substantial research or documentation of the

Hackathons are 24-36 hour events where participants are encouraged to learn, collaborate, and build technological inventions with leaders, companies, and peers in the tech community. Hackathons have been sweeping the nation in the recent years especially at the collegiate level; however, there is no substantial research or documentation of the actual effects of hackathons especially at the collegiate level. This makes justifying the usage of valuable time and resources to host hackathons difficult for tech companies and academic institutions. This thesis specifically examines the effects of collegiate hackathons through running a collegiate hackathon known as Desert Hacks at Arizona State University (ASU). The participants of Desert Hacks were surveyed at the start and at the end of the event to analyze the effects. The results of the survey implicate that participants have grown in base computer programming skills, inclusion in the tech community, overall confidence, and motivation for the technological field. Through these results, this study can be used to help justify the necessity of collegiate hackathons and events similar.
ContributorsLe, Peter Thuan (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134257-Thumbnail Image.png
Description
This thesis describes a multi-robot architecture which allows teams of robots to work with humans to complete tasks. The multi-agent architecture was built using Robot Operating System and Python. This architecture was designed modularly, allowing the use of different planners and robots. The system automatically replans when robots connect or

This thesis describes a multi-robot architecture which allows teams of robots to work with humans to complete tasks. The multi-agent architecture was built using Robot Operating System and Python. This architecture was designed modularly, allowing the use of different planners and robots. The system automatically replans when robots connect or disconnect. The system was demonstrated on two real robots, a Fetch and a PeopleBot, by conducting a surveillance task on the fifth floor of the Computer Science building at Arizona State University. The next part of the system includes extensions for teaming with humans. An Android application was created to serve as the interface between the system and human teammates. This application provides a way for the system to communicate with humans in the loop. In addition, it sends location information of the human teammates to the system so that goal recognition can be performed. This goal recognition allows the generation of human-aware plans. This capability was demonstrated in a mock search and rescue scenario using the Fetch to locate a missing teammate.
ContributorsSaba, Gabriel Christer (Author) / Kambhampati, Subbarao (Thesis director) / Doupé, Adam (Committee member) / Chakraborti, Tathagata (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
One of the core components of many video games is their artificial intelligence. Through AI, a game can tell stories, generate challenges, and create encounters for the player to overcome. Even though AI has continued to advance through the implementation of neural networks and machine learning, game AI tends to

One of the core components of many video games is their artificial intelligence. Through AI, a game can tell stories, generate challenges, and create encounters for the player to overcome. Even though AI has continued to advance through the implementation of neural networks and machine learning, game AI tends to implement a series of states or decisions instead to give the illusion of intelligence. Despite this limitation, games can still generate a wide range of experiences for the player. The Hybrid Game AI Framework is an AI system that combines the benefits of two commonly used approaches to developing game AI: Behavior Trees and Finite State Machines. Developed in the Unity Game Engine and the C# programming language, this AI Framework represents the research that went into studying modern approaches to game AI and my own attempt at implementing the techniques learned. Object-oriented programming concepts such as inheritance, abstraction, and low coupling are utilized with the intent to create game AI that's easy to implement and expand upon. The final goal was to create a flexible yet structured AI data structure while also minimizing drawbacks by combining Behavior Trees and Finite State Machines.
ContributorsRamirez Cordero, Erick Alberto (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05