Matching Items (31)
Filtering by

Clear all filters

151718-Thumbnail Image.png
Description
The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a

The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a reputation score for each tweet that is based not just on content, but also additional information from the Twitter ecosystem that consists of users, tweets, and the web pages that tweets link to. This information is obtained by modeling the Twitter ecosystem as a three-layer graph. The reputation score is used to power two novel methods of ranking tweets by propagating the reputation over an agreement graph based on tweets' content similarity. Additionally, I show how the agreement graph helps counter tweet spam. An evaluation of my method on 16~million tweets from the TREC 2011 Microblog Dataset shows that it doubles the precision over baseline Twitter Search and achieves higher precision than current state of the art method. I present a detailed internal empirical evaluation of RAProp in comparison to several alternative approaches proposed by me, as well as external evaluation in comparison to the current state of the art method.
ContributorsRavikumar, Srijith (Author) / Kambhampati, Subbarao (Thesis advisor) / Davulcu, Hasan (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2013
151460-Thumbnail Image.png
Description
This qualitative case study of 12, eighteen to twenty-four-year-olds from seven countries provided insight into the learning practices on an art-centered, social media platform. The study addressed two guiding questions; (a) what art related skills, knowledge, and dispositions do community members acquire using a social media platform? (b), What new

This qualitative case study of 12, eighteen to twenty-four-year-olds from seven countries provided insight into the learning practices on an art-centered, social media platform. The study addressed two guiding questions; (a) what art related skills, knowledge, and dispositions do community members acquire using a social media platform? (b), What new literacy practices, e.g., the use of new technologies and an ethos of participation, collective intelligence, collaboration, dispersion of abundant resources, and sharing (Knobel & Lankshear, 2007), do members use in acquiring of art-related skills, concepts, knowledge, and dispositions? Data included interviews, online documents, artwork, screen capture of online content, threaded online discussions, and a questionnaire. Drawing on theory and research from both new literacies and art education, the study identified five practices related to learning in the visual arts: (a) practicing as professional artists; (b) engaging in discovery based search strategies for viewing and collecting member produced content; (c) learning by observational strategies; (d) giving constructive criticism and feedback; (e) making learning resources. The study presents suggestions for teachers interested in empowering instruction with new social media technologies.
ContributorsJones, Brian (Author) / Stokrocki, Mary (Thesis advisor) / Young, Bernard (Committee member) / Guzzetti, Barbara (Committee member) / Arizona State University (Publisher)
Created2012
152514-Thumbnail Image.png
Description
As the size and scope of valuable datasets has exploded across many industries and fields of research in recent years, an increasingly diverse audience has sought out effective tools for their large-scale data analytics needs. Over this period, machine learning researchers have also been very prolific in designing improved algorithms

As the size and scope of valuable datasets has exploded across many industries and fields of research in recent years, an increasingly diverse audience has sought out effective tools for their large-scale data analytics needs. Over this period, machine learning researchers have also been very prolific in designing improved algorithms which are capable of finding the hidden structure within these datasets. As consumers of popular Big Data frameworks have sought to apply and benefit from these improved learning algorithms, the problems encountered with the frameworks have motivated a new generation of Big Data tools to address the shortcomings of the previous generation. One important example of this is the improved performance in the newer tools with the large class of machine learning algorithms which are highly iterative in nature. In this thesis project, I set about to implement a low-rank matrix completion algorithm (as an example of a highly iterative algorithm) within a popular Big Data framework, and to evaluate its performance processing the Netflix Prize dataset. I begin by describing several approaches which I attempted, but which did not perform adequately. These include an implementation of the Singular Value Thresholding (SVT) algorithm within the Apache Mahout framework, which runs on top of the Apache Hadoop MapReduce engine. I then describe an approach which uses the Divide-Factor-Combine (DFC) algorithmic framework to parallelize the state-of-the-art low-rank completion algorithm Orthogoal Rank-One Matrix Pursuit (OR1MP) within the Apache Spark engine. I describe the results of a series of tests running this implementation with the Netflix dataset on clusters of various sizes, with various degrees of parallelism. For these experiments, I utilized the Amazon Elastic Compute Cloud (EC2) web service. In the final analysis, I conclude that the Spark DFC + OR1MP implementation does indeed produce competitive results, in both accuracy and performance. In particular, the Spark implementation performs nearly as well as the MATLAB implementation of OR1MP without any parallelism, and improves performance to a significant degree as the parallelism increases. In addition, the experience demonstrates how Spark's flexible programming model makes it straightforward to implement this parallel and iterative machine learning algorithm.
ContributorsKrouse, Brian (Author) / Ye, Jieping (Thesis advisor) / Liu, Huan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2014
Description
Twitter is a micro-blogging platform where the users can be social, informational or both. In certain cases, users generate tweets that have no "hashtags" or "@mentions"; we call it an orphaned tweet. The user will be more interested to find more "context" of an orphaned tweet presumably to engage with

Twitter is a micro-blogging platform where the users can be social, informational or both. In certain cases, users generate tweets that have no "hashtags" or "@mentions"; we call it an orphaned tweet. The user will be more interested to find more "context" of an orphaned tweet presumably to engage with his/her friend on that topic. Finding context for an Orphaned tweet manually is challenging because of larger social graph of a user , the enormous volume of tweets generated per second, topic diversity, and limited information from tweet length of 140 characters. To help the user to get the context of an orphaned tweet, this thesis aims at building a hashtag recommendation system called TweetSense, to suggest hashtags as a context or metadata for the orphaned tweets. This in turn would increase user's social engagement and impact Twitter to maintain its monthly active online users in its social network. In contrast to other existing systems, this hashtag recommendation system recommends personalized hashtags by exploiting the social signals of users in Twitter. The novelty with this system is that it emphasizes on selecting the suitable candidate set of hashtags from the related tweets of user's social graph (timeline).The system then rank them based on the combination of features scores computed from their tweet and user related features. It is evaluated based on its ability to predict suitable hashtags for a random sample of tweets whose existing hashtags are deliberately removed for evaluation. I present a detailed internal empirical evaluation of TweetSense, as well as an external evaluation in comparison with current state of the art method.
ContributorsVijayakumar, Manikandan (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2014
153427-Thumbnail Image.png
Description
Crises or large-scale emergencies such as earthquakes and hurricanes cause massive damage to lives and property. Crisis response is an essential task to mitigate the impact of a crisis. An effective response to a crisis necessitates information gathering and analysis. Traditionally, this process has been restricted to the information collected

Crises or large-scale emergencies such as earthquakes and hurricanes cause massive damage to lives and property. Crisis response is an essential task to mitigate the impact of a crisis. An effective response to a crisis necessitates information gathering and analysis. Traditionally, this process has been restricted to the information collected by first responders on the ground in the affected region or by official agencies such as local governments involved in the response. However, the ubiquity of mobile devices has empowered people to publish information during a crisis through social media, such as the damage reports from a hurricane. Social media has thus emerged as an important channel of information which can be leveraged to improve crisis response. Twitter is a popular medium which has been employed in recent crises. However, it presents new challenges: the data is noisy and uncurated, and it has high volume and high velocity. In this work, I study four key problems in the use of social media for crisis response: effective monitoring and analysis of high volume crisis tweets, detecting crisis events automatically in streaming data, identifying users who can be followed to effectively monitor crisis, and finally understanding user behavior during crisis to detect tweets inside crisis regions. To address these problems I propose two systems which assist disaster responders or analysts to collaboratively collect tweets related to crisis and analyze it using visual analytics to identify interesting regions, topics, and users involved in disaster response. I present a novel approach to detecting crisis events automatically in noisy, high volume Twitter streams. I also investigate and introduce novel methods to tackle information overload through the identification of information leaders in information diffusion who can be followed for efficient crisis monitoring and identification of messages originating from crisis regions using user behavior analysis.
ContributorsKumar, Shamanth (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Maciejewski, Ross (Committee member) / Agarwal, Nitin (Committee member) / Arizona State University (Publisher)
Created2015
153091-Thumbnail Image.png
Description
As robotic technology and its various uses grow steadily more complex and ubiquitous, humans are coming into increasing contact with robotic agents. A large portion of such contact is cooperative interaction, where both humans and robots are required to work on the same application towards achieving common goals. These application

As robotic technology and its various uses grow steadily more complex and ubiquitous, humans are coming into increasing contact with robotic agents. A large portion of such contact is cooperative interaction, where both humans and robots are required to work on the same application towards achieving common goals. These application scenarios are characterized by a need to leverage the strengths of each agent as part of a unified team to reach those common goals. To ensure that the robotic agent is truly a contributing team-member, it must exhibit some degree of autonomy in achieving goals that have been delegated to it. Indeed, a significant portion of the utility of such human-robot teams derives from the delegation of goals to the robot, and autonomy on the part of the robot in achieving those goals. In order to be considered truly autonomous, the robot must be able to make its own plans to achieve the goals assigned to it, with only minimal direction and assistance from the human.

Automated planning provides the solution to this problem -- indeed, one of the main motivations that underpinned the beginnings of the field of automated planning was to provide planning support for Shakey the robot with the STRIPS system. For long, however, automated planners suffered from scalability issues that precluded their application to real world, real time robotic systems. Recent decades have seen a gradual abeyance of those issues, and fast planning systems are now the norm rather than the exception. However, some of these advances in speedup and scalability have been achieved by ignoring or abstracting out challenges that real world integrated robotic systems must confront.

In this work, the problem of planning for human-hobot teaming is introduced. The central idea -- the use of automated planning systems as mediators in such human-robot teaming scenarios -- and the main challenges inspired from real world scenarios that must be addressed in order to make such planning seamless are presented: (i) Goals which can be specified or changed at execution time, after the planning process has completed; (ii) Worlds and scenarios where the state changes dynamically while a previous plan is executing; (iii) Models that are incomplete and can be changed during execution; and (iv) Information about the human agent's plan and intentions that can be used for coordination. These challenges are compounded by the fact that the human-robot team must execute in an open world, rife with dynamic events and other agents; and in a manner that encourages the exchange of information between the human and the robot. As an answer to these challenges, implemented solutions and a fielded prototype that combines all of those solutions into one planning system are discussed. Results from running this prototype in real world scenarios are presented, and extensions to some of the solutions are offered as appropriate.
ContributorsTalamadupula, Kartik (Author) / Kambhampati, Subbarao (Thesis advisor) / Baral, Chitta (Committee member) / Liu, Huan (Committee member) / Scheutz, Matthias (Committee member) / Smith, David E. (Committee member) / Arizona State University (Publisher)
Created2014
153124-Thumbnail Image.png
Description
Writing instruction poses both cognitive and affective challenges, particularly for adolescents. American teens not only fall short of national writing standards, but also tend to lack motivation for school writing, claiming it is too challenging and that they have nothing interesting to write about. Yet, teens enthusiastically immerse themselves in

Writing instruction poses both cognitive and affective challenges, particularly for adolescents. American teens not only fall short of national writing standards, but also tend to lack motivation for school writing, claiming it is too challenging and that they have nothing interesting to write about. Yet, teens enthusiastically immerse themselves in informal writing via text messaging, email, and social media, regularly sharing their thoughts and experiences with a real audience. While these activities are, in fact, writing, research indicates that teens instead view them as simply "communication" or "being social." Accordingly, the aim of this work was to infuse formal classroom writing with naturally engaging elements of informal social media writing to positively impact writing quality and the motivation to write, resulting in the development and implementation of Sparkfolio, an online prewriting tool that: a) addresses affective challenges by allowing students to choose personally relevant topics using their own social media data; and b) provides cognitive support with a planner that helps develop and organize ideas in preparation for writing a first draft. This tool was evaluated in a study involving 46 eleventh-grade English students writing three personal narratives each, and including three experimental conditions: a) using self-authored social media post data while planning with Sparkfolio; b) using only data from posts authored by one's friends while planning with Sparkfolio; and c) a control group that did not use Sparkfolio. The dependent variables were the change in writing motivation and the change in writing quality that occurred before and after the intervention. A scaled pre/posttest measured writing motivation, and the first and third narratives were used as writing quality pre/posttests. A usability scale, logged Sparkfolio data, and qualitative measures were also analyzed. Results indicated that participants who used Sparkfolio had statistically significantly higher gains in writing quality than the control group, validating Sparkfolio as effective. Additionally, while nonsignificant, results suggested that planning with self-authored data provided more writing quality and motivational benefits than data authored by others. This work provides initial empirical evidence that leveraging students' own social media data (securely) holds potential in fostering meaningful personalized learning.
ContributorsSadauskas, John (Author) / Atkinson, Robert K (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2014
153259-Thumbnail Image.png
Description
With the rise of social media, hundreds of millions of people spend countless hours all over the globe on social media to connect, interact, share, and create user-generated data. This rich environment provides tremendous opportunities for many different players to easily and effectively reach out to people, interact with them,

With the rise of social media, hundreds of millions of people spend countless hours all over the globe on social media to connect, interact, share, and create user-generated data. This rich environment provides tremendous opportunities for many different players to easily and effectively reach out to people, interact with them, influence them, or get their opinions. There are two pieces of information that attract most attention on social media sites, including user preferences and interactions. Businesses and organizations use this information to better understand and therefore provide customized services to social media users. This data can be used for different purposes such as, targeted advertisement, product recommendation, or even opinion mining. Social media sites use this information to better serve their users.

Despite the importance of personal information, in many cases people do not reveal this information to the public. Predicting the hidden or missing information is a common response to this challenge. In this thesis, we address the problem of predicting user attributes and future or missing links using an egocentric approach. The current research proposes novel concepts and approaches to better understand social media users in twofold including, a) their attributes, preferences, and interests, and b) their future or missing connections and interactions. More specifically, the contributions of this dissertation are (1) proposing a framework to study social media users through their attributes and link information, (2) proposing a scalable algorithm to predict user preferences; and (3) proposing a novel approach to predict attributes and links with limited information. The proposed algorithms use an egocentric approach to improve the state of the art algorithms in two directions. First by improving the prediction accuracy, and second, by increasing the scalability of the algorithms.
ContributorsAbbasi, Mohammad Ali, 1975- (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Agarwal, Nitin (Committee member) / Arizona State University (Publisher)
Created2014
153269-Thumbnail Image.png
Description
Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

- in fact, the de facto - virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known events such as the U.S Presidential debate to smaller scale,

Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

- in fact, the de facto - virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known events such as the U.S Presidential debate to smaller scale, local events

such as a local Halloween block party. During these events, we often witness a large

amount of commentary contributed by crowds on social media. This burst of social

media responses surges with the "second-screen" behavior and greatly enriches the

user experience when interacting with the event and people's awareness of an event.

Monitoring and analyzing this rich and continuous flow of user-generated content can

yield unprecedentedly valuable information about the event, since these responses

usually offer far more rich and powerful views about the event that mainstream news

simply could not achieve. Despite these benefits, social media also tends to be noisy,

chaotic, and overwhelming, posing challenges to users in seeking and distilling high

quality content from that noise.

In this dissertation, I explore ways to leverage social media as a source of information and analyze events based on their social media responses collectively. I develop, implement and evaluate EventRadar, an event analysis toolbox which is able to identify, enrich, and characterize events using the massive amounts of social media responses. EventRadar contains three automated, scalable tools to handle three core event analysis tasks: Event Characterization, Event Recognition, and Event Enrichment. More specifically, I develop ET-LDA, a Bayesian model and SocSent, a matrix factorization framework for handling the Event Characterization task, i.e., modeling characterizing an event in terms of its topics and its audience's response behavior (via ET-LDA), and the sentiments regarding its topics (via SocSent). I also develop DeMa, an unsupervised event detection algorithm for handling the Event Recognition task, i.e., detecting trending events from a stream of noisy social media posts. Last, I develop CrowdX, a spatial crowdsourcing system for handling the Event Enrichment task, i.e., gathering additional first hand information (e.g., photos) from the field to enrich the given event's context.

Enabled by EventRadar, it is more feasible to uncover patterns that have not been

explored previously and re-validating existing social theories with new evidence. As a

result, I am able to gain deep insights into how people respond to the event that they

are engaged in. The results reveal several key insights into people's various responding

behavior over the event's timeline such the topical context of people's tweets does not

always correlate with the timeline of the event. In addition, I also explore the factors

that affect a person's engagement with real-world events on Twitter and find that

people engage in an event because they are interested in the topics pertaining to

that event; and while engaging, their engagement is largely affected by their friends'

behavior.
ContributorsHu, Yuheng (Author) / Kambhampati, Subbarao (Thesis advisor) / Horvitz, Eric (Committee member) / Krumm, John (Committee member) / Liu, Huan (Committee member) / Sundaram, Hari (Committee member) / Arizona State University (Publisher)
Created2014
150244-Thumbnail Image.png
Description
A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment

A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment challenging, including the massive amounts of data available, large numbers of users, and a highly dynamic environment, provide unique and untapped opportunities for solving the provenance problem for social media. Current approaches for tracking provenance data do not scale for online social media and consequently there is a gap in provenance methodologies and technologies providing exciting research opportunities. The guiding vision is the use of social media information itself to realize a useful amount of provenance data for information in social media. This departs from traditional approaches for data provenance which rely on a central store of provenance information. The contemporary online social media environment is an enormous and constantly updated "central store" that can be mined for provenance information that is not readily made available to the average social media user. This research introduces an approach and builds a foundation aimed at realizing a provenance data capability for social media users that is not accessible today.
ContributorsBarbier, Geoffrey P (Author) / Liu, Huan (Thesis advisor) / Bell, Herbert (Committee member) / Li, Baoxin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011