Matching Items (4)
136340-Thumbnail Image.png
Description
This paper focuses on the Szemerédi regularity lemma, a result in the field of extremal graph theory. The lemma says that every graph can be partitioned into bounded equal parts such that most edges of the graph span these partitions, and these edges are distributed in a fairly uniform way.

This paper focuses on the Szemerédi regularity lemma, a result in the field of extremal graph theory. The lemma says that every graph can be partitioned into bounded equal parts such that most edges of the graph span these partitions, and these edges are distributed in a fairly uniform way. Definitions and notation will be established, leading to explorations of three proofs of the regularity lemma. These are a version of the original proof, a Pythagoras proof utilizing elemental geometry, and a proof utilizing concepts of spectral graph theory. This paper is intended to supplement the proofs with background information about the concepts utilized. Furthermore, it is the hope that this paper will serve as another resource for students and others to begin study of the regularity lemma.
ContributorsByrne, Michael John (Author) / Czygrinow, Andrzej (Thesis director) / Kierstead, Hal (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
137664-Thumbnail Image.png
Description
Mathematics education, defined briefly by both students' understanding and teacher instruction, is a cause for concern in the United States. A 1998 comprehensive study conducted by The Third International Mathematics and Science Study (TIMSS) shows that preadolescent mathematics education is comparatively less effective in this country than it is in

Mathematics education, defined briefly by both students' understanding and teacher instruction, is a cause for concern in the United States. A 1998 comprehensive study conducted by The Third International Mathematics and Science Study (TIMSS) shows that preadolescent mathematics education is comparatively less effective in this country than it is in other countries. The purposes of the present investigation were to understand why mathematics education has its short-comings in the United States, to analyze the most effective ways to help middle grade students learn mathematics, and to examine instructional methods for improving student understanding. The focus is on effective instructional methods because this is an aspect that teachers can directly control and influence. A thorough review of neurological findings and learning theories strongly gave insight into how the preadolescent brain learns best and the investigation further examined the effectiveness of research-based findings by executing a lesson in a 6th grade mathematics classroom and analyzing student results.
ContributorsPatel, Jay Narendra (Author) / Brass, Amber (Thesis director) / White, Darcy (Committee member) / Klem-Deleon, Olga (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2013-05
137666-Thumbnail Image.png
Description
Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one region is on the border of all the regions? In

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one region is on the border of all the regions? In fact, it is possible to design a dynamical system for which the basins of attractions have this Wada property. In certain circumstances, both the Hénon map, a simple system, and the forced damped pendulum, a physical model, produce Wada basins.
ContributorsWhitehurst, Ryan David (Author) / Kostelich, Eric (Thesis director) / Jones, Donald (Committee member) / Armbruster, Dieter (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
133941-Thumbnail Image.png
Description
A thorough understanding of the key concepts of logic is critical for student success. Logic is often not explicitly taught as its own subject in modern curriculums, which results in misconceptions among students as to what comprises logical reasoning. In addition, current standardized testing schemes often promote teaching styles which

A thorough understanding of the key concepts of logic is critical for student success. Logic is often not explicitly taught as its own subject in modern curriculums, which results in misconceptions among students as to what comprises logical reasoning. In addition, current standardized testing schemes often promote teaching styles which emphasize students' abilities to memorize set problem-solving methods over their capacities to reason abstractly and creatively. These phenomena, in tandem with halting progress in United States education compared to other developed nations, suggest that implementing logic courses into public schools and universities can better prepare students for professional careers and beyond. In particular, logic is essential for mathematics students as they transition from calculation-based courses to theoretical, proof-based classes. Many students find this adjustment difficult, and existing university-level courses which emphasize the technical aspects of symbolic logic do not fully bridge the gap between these two different approaches to mathematics. As a step towards resolving this problem, this project proposes a logic course which integrates historical, technical, and interdisciplinary investigations to present logic as a robust and meaningful subject warranting independent study. This course is designed with mathematics students in mind, with particular stresses on different formulations of deductively valid proof schemes. Additionally, this class can either be taught before existing logic classes in an effort to gradually expose students to logic over an extended period of time, or it can replace current logic courses as a more holistic introduction to the subject. The first section of the course investigates historical developments in studies of argumentation and logic throughout different civilizations; specifically, the works of ancient China, ancient India, ancient Greece, medieval Europe, and modernity are investigated. Along the way, several important themes are highlighted within appropriate historical contexts; these are often presented in an ad hoc way in courses emphasizing technical features of symbolic logic. After the motivations for modern symbolic logic are established, the key technical features of symbolic logic are presented, including: logical connectives, truth tables, logical equivalence, derivations, predicates, and quantifiers. Potential obstacles in students' understandings of these ideas are anticipated, and resolution methods are proposed. Finally, examples of how ideas of symbolic logic are manifested in many modern disciplines are presented. In particular, key concepts in game theory, computer science, biology, grammar, and mathematics are reformulated in the context of symbolic logic. By combining the three perspectives of historical context, technical aspects, and practical applications of symbolic logic, this course will ideally make logic a more meaningful and accessible subject for students.
ContributorsRyba, Austin (Author) / Vaz, Paul (Thesis director) / Jones, Donald (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05