Matching Items (6)
Filtering by

Clear all filters

156637-Thumbnail Image.png
Description
Earth-system models describe the interacting components of the climate system and

technological systems that affect society, such as communication infrastructures. Data

assimilation addresses the challenge of state specification by incorporating system

observations into the model estimates. In this research, a particular data

assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is

applied

Earth-system models describe the interacting components of the climate system and

technological systems that affect society, such as communication infrastructures. Data

assimilation addresses the challenge of state specification by incorporating system

observations into the model estimates. In this research, a particular data

assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is

applied to the ionosphere, which is a domain of practical interest due to its effects

on infrastructures that depend on satellite communication and remote sensing. This

dissertation consists of three main studies that propose strategies to improve space-

weather specification during ionospheric extreme events, but are generally applicable

to Earth-system models:

Topic I applies the LETKF to estimate ion density with an idealized model of

the ionosphere, given noisy synthetic observations of varying sparsity. Results show

that the LETKF yields accurate estimates of the ion density field and unobserved

components of neutral winds even when the observation density is spatially sparse

(2% of grid points) and there is large levels (40%) of Gaussian observation noise.

Topic II proposes a targeted observing strategy for data assimilation, which uses

the influence matrix diagnostic to target errors in chosen state variables. This

strategy is applied in observing system experiments, in which synthetic electron density

observations are assimilated with the LETKF into the Thermosphere-Ionosphere-

Electrodynamics Global Circulation Model (TIEGCM) during a geomagnetic storm.

Results show that assimilating targeted electron density observations yields on

average about 60%–80% reduction in electron density error within a 600 km radius of

the observed location, compared to 15% reduction obtained with randomly placed

vertical profiles.

Topic III proposes a methodology to account for systematic model bias arising

ifrom errors in parametrized solar and magnetospheric inputs. This strategy is ap-

plied with the TIEGCM during a geomagnetic storm, and is used to estimate the

spatiotemporal variations of bias in electron density predictions during the

transitionary phases of the geomagnetic storm. Results show that this strategy reduces

error in 1-hour predictions of electron density by about 35% and 30% in polar regions

during the main and relaxation phases of the geomagnetic storm, respectively.
ContributorsDurazo, Juan, Ph.D (Author) / Kostelich, Eric J. (Thesis advisor) / Mahalov, Alex (Thesis advisor) / Tang, Wenbo (Committee member) / Moustaoui, Mohamed (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2018
135327-Thumbnail Image.png
Description
A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the Kelvin-Helmholtz instability, and the global shallow water spectral model to simulate the nonlinear evolution of twin tropical cyclones. The leapfrog

A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the Kelvin-Helmholtz instability, and the global shallow water spectral model to simulate the nonlinear evolution of twin tropical cyclones. The leapfrog scheme leads to computational modes in the solutions to highly nonlinear systems, and time-filters are often used to damp these modes. The proposed filter damps the computational modes without appreciably degrading the physical mode. Its performance in these metrics is superior to the second-order time-filtered leapfrog scheme developed by Robert and Asselin.
Created2016-05
134565-Thumbnail Image.png
Description
A numerical study of wave-induced momentum transport across the tropopause in the presence of a stably stratified thin inversion layer is presented and discussed. This layer consists of a sharp increase in static stability within the tropopause. The wave propagation is modeled by numerically solving the Taylor-Goldstein equation, which governs

A numerical study of wave-induced momentum transport across the tropopause in the presence of a stably stratified thin inversion layer is presented and discussed. This layer consists of a sharp increase in static stability within the tropopause. The wave propagation is modeled by numerically solving the Taylor-Goldstein equation, which governs the dynamics of internal waves in stably stratified shear flows. The waves are forced by a flow over a bell shaped mountain placed at the lower boundary of the domain. A perfectly radiating condition based on the group velocity of mountain waves is imposed at the top to avoid artificial wave reflection. A validation for the numerical method through comparisons with the corresponding analytical solutions will be provided. Then, the method is applied to more realistic profiles of the stability to study the impact of these profiles on wave propagation through the tropopause.
Created2017-05
Description
Cancer modeling has brought a lot of attention in recent years. It had been proven to be a difficult task to model the behavior of cancer cells, since little about the "rules" a cell follows has been known. Existing models for cancer cells can be generalized into two categories: macroscopic

Cancer modeling has brought a lot of attention in recent years. It had been proven to be a difficult task to model the behavior of cancer cells, since little about the "rules" a cell follows has been known. Existing models for cancer cells can be generalized into two categories: macroscopic models which studies the tumor structure as a whole, and microscopic models which focus on the behavior of individual cells. Both modeling strategies strive the same goal of creating a model that can be validated with experimental data, and is reliable for predicting tumor growth. In order to achieve this goal, models must be developed based on certain rules that tumor structures follow. This paper will introduce how such rules can be implemented in a mathematical model, with the example of individual based modeling.
ContributorsHan, Zimo (Author) / Motsch, Sebastien (Thesis director) / Moustaoui, Mohamed (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137845-Thumbnail Image.png
Description
The deficiency of American primary and secondary schools as compared to schools worldwide has long been documented. The Teaching Gap highlights exactly where our problems might lie, and lays out a plan for how to deal with it. Progress would be slow, but tangible. Our country, however, seems to prefer

The deficiency of American primary and secondary schools as compared to schools worldwide has long been documented. The Teaching Gap highlights exactly where our problems might lie, and lays out a plan for how to deal with it. Progress would be slow, but tangible. Our country, however, seems to prefer vast and immediate overhauls that have historically failed (see: New math, etc.). If we had implemented the changes in The Teaching Gap in the decade in which it was written, we would be seeing results by now. Instead, every change we make gets reverted. The Common Core State Standards will prove over the next few years to be either another one of these attempts or a large step in the right direction. It might finally be the latter, as its creation was informed by practices that work best in every state in the US, as well as high- performing countries around the world.
ContributorsMcKee, Emily (Author) / Sande, V. Carla (Thesis director) / Ashbrook, Mark (Committee member) / Schroeder, Darcy (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137848-Thumbnail Image.png
Description
Identifying associations between genotypes and gene expression levels using next-generation technology has enabled systematic interrogation of regulatory variation underlying complex phenotypes. Understanding the source of expression variation has important implications for disease susceptibility, phenotypic diversity, and adaptation (Main, 2009). Interest in the existence of allele-specific expression in autosomal genes evolved

Identifying associations between genotypes and gene expression levels using next-generation technology has enabled systematic interrogation of regulatory variation underlying complex phenotypes. Understanding the source of expression variation has important implications for disease susceptibility, phenotypic diversity, and adaptation (Main, 2009). Interest in the existence of allele-specific expression in autosomal genes evolved with the increased awareness of the important role that variation in non-coding DNA sequences can play in determining phenotypic diversity, and the essential role parent-of-origin expression has in early development (Knight, 2004). As new implications of high-throughput sequencing are conceived, it is becoming increasingly important to develop statistical methods tailored to large and formidably complex data sets in order to maximize the biological insights derived from next-generation sequencing experiments. Here, a Bayesian hierarchical probability model based on the beta-binomial distribution is proposed as a possible approach for quantifying allele-specific expression from whole genome (WGS) and whole transcriptome (RNA-seq) data. Pipeline for the analysis of WGS and RNA-seq data sets from ten samples was developed and implemented, while allele-specific expression (ASE) was quantified from both haplotypes using individuals heterozygous at the tested variants utilizing the described methodology. Both computational and statistical framework applied accurately quantified ASE, achieving high reproducibility of already described allele-specific genes in the literature. In conclusion, described methodology provides a solid starting point for quantifying allele specific expression across whole genomes.
ContributorsMalenica, Ivana (Author) / Craig, David (Thesis director) / Rosenberg, Michael (Committee member) / Szelinger, Szabolcs (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12