Matching Items (7)
Filtering by

Clear all filters

150637-Thumbnail Image.png
Description
Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.
ContributorsHan, Zhun (Author) / Smith, Hal (Thesis advisor) / Armbruster, Dieter (Committee member) / Kawski, Matthias (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2012
137666-Thumbnail Image.png
Description
Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one region is on the border of all the regions? In

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one region is on the border of all the regions? In fact, it is possible to design a dynamical system for which the basins of attractions have this Wada property. In certain circumstances, both the Hénon map, a simple system, and the forced damped pendulum, a physical model, produce Wada basins.
ContributorsWhitehurst, Ryan David (Author) / Kostelich, Eric (Thesis director) / Jones, Donald (Committee member) / Armbruster, Dieter (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
137483-Thumbnail Image.png
Description
Analytic research on basketball games is growing quickly, specifically in the National Basketball Association. This paper explored the development of this analytic research and discovered that there has been a focus on individual player metrics and a dearth of quantitative team characterizations and evaluations. Consequently, this paper continued the exploratory

Analytic research on basketball games is growing quickly, specifically in the National Basketball Association. This paper explored the development of this analytic research and discovered that there has been a focus on individual player metrics and a dearth of quantitative team characterizations and evaluations. Consequently, this paper continued the exploratory research of Fewell and Armbruster's "Basketball teams as strategic networks" (2012), which modeled basketball teams as networks and used metrics to characterize team strategy in the NBA's 2010 playoffs. Individual players and outcomes were nodes and passes and actions were the links. This paper used data that was recorded from playoff games of the two 2012 NBA finalists: the Miami Heat and the Oklahoma City Thunder. The same metrics that Fewell and Armbruster used were explained, then calculated using this data. The offensive networks of these two teams during the playoffs were analyzed and interpreted by using other data and qualitative characterization of the teams' strategies; the paper found that the calculated metrics largely matched with our qualitative characterizations of the teams. The validity of the metrics in this paper and Fewell and Armbruster's paper was then discussed, and modeling basketball teams as multiple-order Markov chains rather than as networks was explored.
ContributorsMohanraj, Hariharan (Co-author) / Choi, David (Co-author) / Armbruster, Dieter (Thesis director) / Fewell, Jennifer (Committee member) / Brooks, Daniel (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
Description
Pogonomyrmex californicus (a species of harvester ant) colonies typically have anywhere from one to five queens. A queen can control the ratio of female to male offspring she produces, field research indicating that this ratio is genetically hardwired and does not change over time relative to other queens. Further, a

Pogonomyrmex californicus (a species of harvester ant) colonies typically have anywhere from one to five queens. A queen can control the ratio of female to male offspring she produces, field research indicating that this ratio is genetically hardwired and does not change over time relative to other queens. Further, a queen has an individual reproductive advantage if she has a small reproductive ratio. A colony, however, has a reproductive advantage if it has queens with large ratios, as these queens produce many female workers to further colony success. We have developed an agent-based model to analyze the "cheating" phenotype observed in field research, in which queens extend their lifespans by producing disproportionately many male offspring. The model generates phenotypes and simulates years of reproductive cycles. The results allow us to examine the surviving phenotypes and determine conditions under which a cheating phenotype has an evolutionary advantage. Conditions generating a bimodal steady state solution would indicate a cheating phenotype's ability to invade a cooperative population.
ContributorsEngel, Lauren Marie Agnes (Author) / Armbruster, Dieter (Thesis director) / Fewell, Jennifer (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
162238-Thumbnail Image.png
DescriptionUnderstanding the evolution of opinions is a delicate task as the dynamics of how one changes their opinion based on their interactions with others are unclear.
ContributorsWeber, Dylan (Author) / Motsch, Sebastien (Thesis advisor) / Lanchier, Nicolas (Committee member) / Platte, Rodrigo (Committee member) / Armbruster, Dieter (Committee member) / Fricks, John (Committee member) / Arizona State University (Publisher)
Created2021
156933-Thumbnail Image.png
Description
Rabies is an infectious viral disease. It is usually fatal if a victim reaches the rabid stage, which starts after the appearance of disease symptoms. The disease virus attacks the central nervous system, and then it migrates from peripheral nerves to the spinal cord and brain. At the time when

Rabies is an infectious viral disease. It is usually fatal if a victim reaches the rabid stage, which starts after the appearance of disease symptoms. The disease virus attacks the central nervous system, and then it migrates from peripheral nerves to the spinal cord and brain. At the time when the rabies virus reaches the brain, the incubation period is over and the symptoms of clinical disease appear on the victim. From the brain, the virus travels via nerves to the salivary glands and saliva.

A mathematical model is developed for the spread of rabies in a spatially distributed fox population to model the spread of the rabies epizootic through middle Europe that occurred in the second half of the 20th century. The model considers both territorial and wandering rabid foxes and includes a latent period for the infection. Since the model assumes these two kinds of rabid foxes, it is a system of both partial differential and integral equations (with integration

over space and, occasionally, also over time). To study the spreading speeds of the rabies epidemic, the model is reduced to a scalar Volterra-Hammerstein integral equation, and space-time Laplace transform of the integral equation is used to derive implicit formulas for the spreading speed. The spreading speeds are discussed and implicit formulas are given for latent periods of fixed length, exponentially distributed length, Gamma distributed length, and log-normally distributed length. A number of analytic and numerical results are shown pertaining to the spreading speeds.

Further, a numerical algorithm is described for the simulation

of the spread of rabies in a spatially distributed fox population on a bounded domain with Dirichlet boundary conditions. I propose the following methods for the numerical approximation of solutions. The partial differential and integral equations are discretized in the space variable by central differences of second order and by

the composite trapezoidal rule. Next, the ordinary or delay differential equations that are obtained this way are discretized in time by explicit

continuous Runge-Kutta methods of fourth order for ordinary and delay differential systems. My particular interest

is in how the partition of rabid foxes into

territorial and diffusing rabid foxes influences

the spreading speed, a question that can be answered by purely analytic means only for small basic reproduction numbers. I will restrict the numerical analysis

to latent periods of fixed length and to exponentially

distributed latent periods.

The results of the numerical calculations

are compared for latent periods

of fixed and exponentially distributed length

and for various proportions of territorial

and wandering rabid foxes.

The speeds of spread observed in the

simulations are compared

to spreading speeds obtained by numerically solving the analytic formulas

and to observed speeds of epizootic frontlines

in the European rabies outbreak 1940 to 1980.
ContributorsAlanazi, Khalaf Matar (Author) / Thieme, Horst R. (Thesis advisor) / Jackiewicz, Zdzislaw (Committee member) / Baer, Steven (Committee member) / Gardner, Carl (Committee member) / Kuang, Yang (Committee member) / Smith, Hal (Committee member) / Arizona State University (Publisher)
Created2018
156420-Thumbnail Image.png
Description
The Kuramoto model is an archetypal model for studying synchronization in groups

of nonidentical oscillators where oscillators are imbued with their own frequency and

coupled with other oscillators though a network of interactions. As the coupling

strength increases, there is a bifurcation to complete synchronization where all oscillators

move with the same frequency and

The Kuramoto model is an archetypal model for studying synchronization in groups

of nonidentical oscillators where oscillators are imbued with their own frequency and

coupled with other oscillators though a network of interactions. As the coupling

strength increases, there is a bifurcation to complete synchronization where all oscillators

move with the same frequency and show a collective rhythm. Kuramoto-like

dynamics are considered a relevant model for instabilities of the AC-power grid which

operates in synchrony under standard conditions but exhibits, in a state of failure,

segmentation of the grid into desynchronized clusters.

In this dissertation the minimum coupling strength required to ensure total frequency

synchronization in a Kuramoto system, called the critical coupling, is investigated.

For coupling strength below the critical coupling, clusters of oscillators form

where oscillators within a cluster are on average oscillating with the same long-term

frequency. A unified order parameter based approach is developed to create approximations

of the critical coupling. Some of the new approximations provide strict lower

bounds for the critical coupling. In addition, these approximations allow for predictions

of the partially synchronized clusters that emerge in the bifurcation from the

synchronized state.

Merging the order parameter approach with graph theoretical concepts leads to a

characterization of this bifurcation as a weighted graph partitioning problem on an

arbitrary networks which then leads to an optimization problem that can efficiently

estimate the partially synchronized clusters. Numerical experiments on random Kuramoto

systems show the high accuracy of these methods. An interpretation of the

methods in the context of power systems is provided.
ContributorsGilg, Brady (Author) / Armbruster, Dieter (Thesis advisor) / Mittelmann, Hans (Committee member) / Scaglione, Anna (Committee member) / Strogatz, Steven (Committee member) / Welfert, Bruno (Committee member) / Arizona State University (Publisher)
Created2018