Matching Items (4)
Filtering by

Clear all filters

155950-Thumbnail Image.png
Description
The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors’ abilities to teach mathematical concepts with

The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors’ abilities to teach mathematical concepts with the new technology. Therefore, in order to better understand teaching with technology, we need to take a closer look at the adoption of new technology in a mathematics classroom. Using interviews and classroom observations, I explored perturbations in mathematical classroom practices as an instructor implemented virtual manipulatives as novel didactic objects in rational function instruction. In particular, the instructor used didactic objects that were designed to lay the foundation for developing a conceptual understanding of rational functions through the coordination of relative size of the value of the numerator in terms of the value of the denominator. The results are organized according to a taxonomy that captures leader actions, communication, expectations of technology, roles, timing, student engagement, and mathematical conceptions.
ContributorsPampel, Krysten (Author) / Currin van de Sande, Carla (Thesis advisor) / Thompson, Patrick W (Committee member) / Carlson, Marilyn (Committee member) / Milner, Fabio (Committee member) / Strom, April (Committee member) / Arizona State University (Publisher)
Created2017
156865-Thumbnail Image.png
Description
This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and

This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and discuss the implications of these uses for interpreting and leveraging results to produce empirically tested learning trajectories. From my summary and analysis I develop two recommendations for the cognitive researchers developing empirically supported learning trajectories. (1) A researcher should frame his/her work, and analyze others’ work, within the researcher’s image of a broadly coherent trajectory for student learning and (2) that the field should work towards a common understanding for the meaning of a hypothetical learning trajectory.

In Paper 2 I argue that prior research in online learning has tested the impact of online courses on measures such as student retention rates, satisfaction scores, and GPA but that research is needed to describe the meanings students construct for mathematical ideas researchers have identified as critical to their success in future math courses and other STEM fields. This paper discusses the need for a new focus in studying online mathematics learning and calls for cognitive researchers to begin developing a productive methodology for examining the meanings students construct while engaged in online lessons.

Paper 3 describes the online Precalculus course intervention we designed around measurement imagery and quantitative reasoning as themes that unite topics across units. I report results relative to the meanings students developed for exponential functions and related ideas (such as percent change and growth factors) while working through lessons in the intervention. I provide a conceptual analysis guiding its design and discuss pre-test and pre-interview results, post-test and post-interview results, and observations from student behaviors while interacting with lessons. I demonstrate that the targeted meanings can be productive for students, show common unproductive meanings students possess as they enter Precalculus, highlight challenges and opportunities in teaching and learning in the online environment, and discuss needed adaptations to the intervention and future research opportunities informed by my results.
ContributorsO'Bryan, Alan Eugene (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick W (Committee member) / Milner, Fabio (Committee member) / Roh, Kyeong Hah (Committee member) / Tallman, Michael (Committee member) / Arizona State University (Publisher)
Created2018
155002-Thumbnail Image.png
Description
This dissertation reports three studies of students’ and teachers’ meanings for quotient, fraction, measure, rate, and rate of change functions. Each study investigated individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual analysis of what constitutes strong meanings for fraction, measure, and rate of change is critical for each study.

This dissertation reports three studies of students’ and teachers’ meanings for quotient, fraction, measure, rate, and rate of change functions. Each study investigated individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual analysis of what constitutes strong meanings for fraction, measure, and rate of change is critical for each study. In particular, each study distinguishes additive and multiplicative meanings for fraction and rate of change.

The first paper reports an investigation of 251 high school mathematics teachers’ meanings for slope, measurement, and rate of change. Most teachers conveyed primarily additive and formulaic meanings for slope and rate of change on written items. Few teachers conveyed that a rate of change compares the relative sizes of changes in two quantities. Teachers’ weak measurement schemes were associated with limited meanings for rate of change. Overall, the data suggests that rate of change should be a topics of targeted professional development.

The second paper reports the quantitative part of a mixed method study of 153 calculus students at a large public university. The majority of calculus students not only have weak meanings for fraction, measure, and constant rates but that having weak meanings is predictive of lower scores on a test about rate of change functions. Regression is used to determine the variation in student success on questions about rate of change functions (derivatives) associated with variation in success on fraction, measure, rate, and covariation items.

The third paper investigates the implications of two students’ fraction schemes for their understanding of rate of change functions. Students’ weak measurement schemes obstructed their ability to construct a rate of change function given the graph of an original function. The two students did not coordinate three levels of units, and struggled to relate partitioning and iterating in a way that would help them reason about fractions, rate of change, and rate of change functions.

Taken as a whole the studies show that the majority of secondary teachers and calculus students studied have weak meanings for foundational ideas and that these weaknesses cause them problems in making sense of more applications of rate of change.
ContributorsByerley, Cameron (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn P (Committee member) / Middleton, James A. (Committee member) / Saldanha, Luis (Committee member) / Mcnamara, Allen (Committee member) / Arizona State University (Publisher)
Created2016
155768-Thumbnail Image.png
Description
Researchers have documented the importance of seeing a graph as an emergent trace of how two quantities’ values vary simultaneously in order to reason about the graph in terms of quantitative relationships. If a student does not see a graph as a representation of how quantities change together then the

Researchers have documented the importance of seeing a graph as an emergent trace of how two quantities’ values vary simultaneously in order to reason about the graph in terms of quantitative relationships. If a student does not see a graph as a representation of how quantities change together then the student is limited to reasoning about perceptual features of the shape of the graph.

This dissertation reports results of an investigation into the ways of thinking that support and inhibit students from constructing and reasoning about graphs in terms of covarying quantities. I collected data by engaging three university precalculus students in asynchronous teaching experiments. I designed the instructional sequence to support students in making three constructions: first imagine representing quantities’ magnitudes along the axes, then simultaneously represent these magnitudes with a correspondence point in the plane, and finally anticipate tracking the correspondence point to track how the two quantities’ attributes change simultaneously.

Findings from this investigation provide insights into how students come to engage in covariational reasoning and re-present their imagery in their graphing actions. The data presented here suggests that it is nontrivial for students to coordinate their images of two varying quantities. This is significant because without a way to coordinate two quantities’ variation the student is limited to engaging in static shape thinking.

I describe three types of imagery: a correspondence point, Tinker Bell and her pixie dust, and an actor taking baby steps, that supported students in developing ways to coordinate quantities’ variation. I discuss the figurative aspects of the students’ coordination in order to account for the difficulties students had (1) constructing a multiplicative object that persisted under variation, (2) reconstructing their acts of covariation in other graphing tasks, and (3) generalizing these acts of covariation to reason about formulas in terms of covarying quantities.
ContributorsFrank, Kristin Marianna (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn P (Thesis advisor) / Milner, Fabio (Committee member) / Roh, Kyeong Hah (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2017