Matching Items (10)
Filtering by

Clear all filters

149906-Thumbnail Image.png
Description
In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of

In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of directed graphs. Viewing the higher-dimensional analogues of directed graphs through the lens of product systems, I give a rigorous proof that topological k-graphs are essentially product systems over N^k of topological graphs. I introduce a "compactly aligned" condition for such product systems of graphs and show that this coincides with the similarly-named conditions for topological k-graphs and for the associated product systems over N^k of C*-correspondences. Finally I consider the constructions arising from topological dynamical systems consisting of a locally compact Hausdorff space and k commuting local homeomorphisms. I show that in this case, the associated topological k-graph correspondence is isomorphic to the product system over N^k of C*-correspondences arising from a related Exel-Larsen system. Moreover, I show that the topological k-graph C*-algebra has a crossed product structure in the sense of Larsen.
ContributorsPatani, Nura (Author) / Kaliszewski, Steven (Thesis advisor) / Quigg, John (Thesis advisor) / Bremner, Andrew (Committee member) / Kawski, Matthias (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2011
154866-Thumbnail Image.png
Description
Chapter 1 introduces some key elements of important topics such as; quantum mechanics,

representation theory of the Lorentz and Poincare groups, and a review of some basic rela- ´

tivistic wave equations that will play an important role in the work to follow. In Chapter 2,

a complex covariant form of the classical

Chapter 1 introduces some key elements of important topics such as; quantum mechanics,

representation theory of the Lorentz and Poincare groups, and a review of some basic rela- ´

tivistic wave equations that will play an important role in the work to follow. In Chapter 2,

a complex covariant form of the classical Maxwell’s equations in a moving medium or at

rest is introduced. In addition, a compact, Lorentz invariant, form of the energy-momentum

tensor is derived. In chapter 3, the concept of photon helicity is critically analyzed and its

connection with the Pauli-Lubanski vector from the viewpoint of the complex electromag- ´

netic field, E+ iH. To this end, a complex covariant form of Maxwell’s equations is used.

Chapter 4 analyzes basic relativistic wave equations for the classical fields, such as Dirac’s

equation, Weyl’s two-component equation for massless neutrinos and the Proca, Maxwell

and Fierz-Pauli equations, from the viewpoint of the Pauli-Lubanski vector and the Casimir ´

operators of the Poincare group. A connection between the spin of a particle/field and ´

consistency of the corresponding overdetermined system is emphasized in the massless

case. Chapter 5 focuses on the so-called generalized quantum harmonic oscillator, which

is a Schrodinger equation with a time-varying quadratic Hamiltonian operator. The time ¨

evolution of exact wave functions of the generalized harmonic oscillators is determined

in terms of the solutions of certain Ermakov and Riccati-type systems. In addition, it is

shown that the classical Arnold transform is naturally connected with Ehrenfest’s theorem

for generalized harmonic oscillators. In Chapter 6, as an example of the usefulness of the

methods introduced in Chapter 5 a model for the quantization of an electromagnetic field

in a variable media is analyzed. The concept of quantization of an electromagnetic field

in factorizable media is discussed via the Caldirola-Kanai Hamiltonian. A single mode

of radiation for this model is used to find time-dependent photon amplitudes in relation

to Fock states. A multi-parameter family of the squeezed states, photon statistics, and the

uncertainty relation, are explicitly given in terms of the Ermakov-type system.
ContributorsLanfear, Nathan A (Author) / Suslov, Sergei (Thesis advisor) / Kotschwar, Brett (Thesis advisor) / Platte, Rodrigo (Committee member) / Matyushov, Dmitry (Committee member) / Kuiper, Hendrik (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2016
155124-Thumbnail Image.png
Description
Higher-rank graphs, or k-graphs, are higher-dimensional analogues of directed graphs, and as with ordinary directed graphs, there are various C*-algebraic objects that can be associated with them. This thesis adopts a functorial approach to study the relationship between k-graphs and their associated C*-algebras. In particular, two functors are given between

Higher-rank graphs, or k-graphs, are higher-dimensional analogues of directed graphs, and as with ordinary directed graphs, there are various C*-algebraic objects that can be associated with them. This thesis adopts a functorial approach to study the relationship between k-graphs and their associated C*-algebras. In particular, two functors are given between appropriate categories of higher-rank graphs and the category of C*-algebras, one for Toeplitz algebras and one for Cuntz-Krieger algebras. Additionally, the Cayley graphs of finitely generated groups are used to define a class of k-graphs, and a functor is then given from a category of finitely generated groups to the category of C*-algebras. Finally, functoriality is investigated for product systems of C*-correspondences associated to k-graphs. Additional results concerning the structural consequences of functoriality, properties of the functors, and combinatorial aspects of k-graphs are also included throughout.
ContributorsEikenberry, Keenan (Author) / Quigg, John (Thesis advisor) / Kaliszewski, Steven (Thesis advisor) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2016
148333-Thumbnail Image.png
Description

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal why interpretations are necessary to map the quantum world onto our classical world. We then introduce the Copenhagen interpretation, and how many-worlds differs from it. From there, we dive into the concepts of entanglement and decoherence, explaining how worlds branch in an Everettian universe, and how an Everettian universe can appear as our classical observed world. From there, we attempt to answer common questions about many-worlds and discuss whether there are philosophical ramifications to believing such a theory. Finally, we look at whether the many-worlds interpretation can be proven, and why one might choose to believe it.

ContributorsSecrest, Micah (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168757-Thumbnail Image.png
DescriptionCantor sets are totally disconnected, compact, metrizable, and contain no isolated points. All Cantor sets are homeomorphic to each other, but the addition of the metric yields new properties which can be detected by their correspondence with the boundaries of infinite rooted trees.
ContributorsAmes, Robert (Author) / Spielberg, John (Thesis advisor) / Kaliszewski, Steven (Committee member) / Quigg, John (Committee member) / Arizona State University (Publisher)
Created2022
187716-Thumbnail Image.png
Description
Iwasawa theory is a branch of number theory that studies the behavior of certain objects associated to a $\mathbb{Z}_p$-extension. We will focus our attention to the cyclotomic $\mathbb{Z}_p$-extensions of imaginary quadratic fields for varying primes p, and will give some conditions for when the corresponding lambda-invariants are greater than

Iwasawa theory is a branch of number theory that studies the behavior of certain objects associated to a $\mathbb{Z}_p$-extension. We will focus our attention to the cyclotomic $\mathbb{Z}_p$-extensions of imaginary quadratic fields for varying primes p, and will give some conditions for when the corresponding lambda-invariants are greater than 1.
ContributorsStokes, Christopher Mathewson (Author) / Childress, Nancy (Thesis advisor) / Sprung, Florian (Committee member) / Montaño, Johnathan (Committee member) / Paupert, Julian (Committee member) / Kaliszewski, Steven (Committee member) / Arizona State University (Publisher)
Created2023
154345-Thumbnail Image.png
Description
This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between graph C*-algebras and fractal geometry. In this work, this theorem is extended from ordinary directed graphs to

This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between graph C*-algebras and fractal geometry. In this work, this theorem is extended from ordinary directed graphs to higher-rank graphs. Second, a characterization is given of the Cuntz-Pimsner algebra associated to a tensor product of C*-correspondences. This is a generalization of a result by Kumjian about graphs algebras. This second result is applied to several important special cases of Cuntz-Pimsner algebras including topological graph algebras, crossed products by the integers and crossed products by completely positive maps. The result has meaningful interpretations in each context. The third result is an extension of the second result from an ordinary tensor product to a special case of Woronowicz's twisted tensor product. This result simultaneously characterizes Cuntz-Pimsner algebras of ordinary and graded tensor products and Cuntz-Pimsner algebras of crossed products by actions and coactions of discrete groups, the latter partially recovering earlier results of Hao and Ng and of Kaliszewski, Quigg and Robertson.
ContributorsMorgan, Adam (Author) / Kaliszewski, Steven (Thesis advisor) / Quigg, John (Thesis advisor) / Spielberg, Jack (Committee member) / Kawski, Matthias (Committee member) / Kotschwar, Brett (Committee member) / Arizona State University (Publisher)
Created2016
157588-Thumbnail Image.png
Description
The main part of this work establishes existence, uniqueness and regularity properties of measure-valued solutions of a nonlinear hyperbolic conservation law with non-local velocities. Major challenges stem from in- and out-fluxes containing nonzero pure-point parts which cause discontinuities of the velocities. This part is preceded, and motivated, by an extended

The main part of this work establishes existence, uniqueness and regularity properties of measure-valued solutions of a nonlinear hyperbolic conservation law with non-local velocities. Major challenges stem from in- and out-fluxes containing nonzero pure-point parts which cause discontinuities of the velocities. This part is preceded, and motivated, by an extended study which proves that an associated optimal control problem has no optimal $L^1$-solutions that are supported on short time intervals.

The hyperbolic conservation law considered here is a well-established model for a highly re-entrant semiconductor manufacturing system. Prior work established well-posedness for $L^1$-controls and states, and existence of optimal solutions for $L^2$-controls, states, and control objectives. The results on measure-valued solutions presented here reduce to the existing literature in the case of initial state and in-flux being absolutely continuous measures. The surprising well-posedness (in the face of measures containing nonzero pure-point part and discontinuous velocities) is directly related to characteristic features of the model that capture the highly re-entrant nature of the semiconductor manufacturing system.

More specifically, the optimal control problem is to minimize an $L^1$-functional that measures the mismatch between actual and desired accumulated out-flux. The focus is on the transition between equilibria with eventually zero backlog. In the case of a step up to a larger equilibrium, the in-flux not only needs to increase to match the higher desired out-flux, but also needs to increase the mass in the factory and to make up for the backlog caused by an inverse response of the system. The optimality results obtained confirm the heuristic inference that the optimal solution should be an impulsive in-flux, but this is no longer in the space of $L^1$-controls.

The need for impulsive controls motivates the change of the setting from $L^1$-controls and states to controls and states that are Borel measures. The key strategy is to temporarily abandon the Eulerian point of view and first construct Lagrangian solutions. The final section proposes a notion of weak measure-valued solutions and proves existence and uniqueness of such.

In the case of the in-flux containing nonzero pure-point part, the weak solution cannot depend continuously on the time with respect to any norm. However, using semi-norms that are related to the flat norm, a weaker form of continuity of solutions with respect to time is proven. It is conjectured that also a similar weak continuous dependence on initial data holds with respect to a variant of the flat norm.
ContributorsGong, Xiaoqian, Ph.D (Author) / Kawski, Matthias (Thesis advisor) / Kaliszewski, Steven (Committee member) / Motsch, Sebastien (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2019
Description
This dissertation will cover two topics. For the first, let $K$ be a number field. A $K$-derived polynomial $f(x) \in K[x]$ is a polynomial that

factors into linear factors over $K$, as do all of its derivatives. Such a polynomial

is said to be {\it proper} if

its roots are distinct. An

This dissertation will cover two topics. For the first, let $K$ be a number field. A $K$-derived polynomial $f(x) \in K[x]$ is a polynomial that

factors into linear factors over $K$, as do all of its derivatives. Such a polynomial

is said to be {\it proper} if

its roots are distinct. An unresolved question in the literature is

whether or not there exists a proper $\Q$-derived polynomial of degree 4. Some examples

are known of proper $K$-derived quartics for a quadratic number field $K$, although other

than $\Q(\sqrt{3})$, these fields have quite large discriminant. (The second known field

is $\Q(\sqrt{3441})$.) I will describe a search for quadratic fields $K$

over which there exist proper $K$-derived quartics. The search finds examples for

$K=\Q(\sqrt{D})$ with $D=...,-95,-41,-19,21,31,89,...$.\\

For the second topic, by Krasner's lemma there exist a finite number of degree $n$ extensions of $\Q_p$. Jones and Roberts have developed a database recording invariants of $p$-adic extensions for low degree $n$. I will contribute data to this database by computing the Galois slope content, inertia subgroup, and Galois mean slope for a variety of wildly ramified extensions of composite degree using the idea of \emph{global splitting models}.
ContributorsCarrillo, Benjamin (Author) / Jones, John (Thesis advisor) / Bremner, Andrew (Thesis advisor) / Childress, Nancy (Committee member) / Fishel, Susanna (Committee member) / Kaliszewski, Steven (Committee member) / Arizona State University (Publisher)
Created2019
161819-Thumbnail Image.png
Description
This thesis explores several questions concerning the preservation of geometric structure under the Ricci flow, an evolution equation for Riemannian metrics. Within the class of complete solutions with bounded curvature, short-time existence and uniqueness of solutions guarantee that symmetries and many other geometric features are preserved along the flow. However,

This thesis explores several questions concerning the preservation of geometric structure under the Ricci flow, an evolution equation for Riemannian metrics. Within the class of complete solutions with bounded curvature, short-time existence and uniqueness of solutions guarantee that symmetries and many other geometric features are preserved along the flow. However, much less is known about the analytic and geometric properties of solutions of potentially unbounded curvature. The first part of this thesis contains a proof that the full holonomy group is preserved, up to isomorphism, forward and backward in time. The argument reduces the problem to the preservation of reduced holonomy via an analysis of the equation satisfied by parallel translation around a loop with respect to the evolving metric. The subsequent chapter examines solutions satisfying a certain instantaneous, but nonuniform, curvature bound, and shows that when such solutions split as a product initially, they will continue to split for all time. This problem is encoded as one of uniqueness for an auxiliary system constructed from a family of time-dependent, orthogonal distributions of the tangent bundle. The final section presents some details of an ongoing project concerning the uniqueness of asymptotically product gradient shrinking Ricci solitons, including the construction of a certain system of mixed differential inequalities which measures the extent to which such a soliton fails to split.
ContributorsCook, Mary (Author) / Kotschwar, Brett (Thesis advisor) / Paupert, Julien (Committee member) / Kawski, Matthias (Committee member) / Kaliszewski, Steven (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2021