Matching Items (6)
Filtering by

Clear all filters

153153-Thumbnail Image.png
Description
Since Duffin and Schaeffer's introduction of frames in 1952, the concept of a frame has received much attention in the mathematical community and has inspired several generalizations. The focus of this thesis is on the concept of an operator-valued frame (OVF) and a more general concept called herein an operator-valued

Since Duffin and Schaeffer's introduction of frames in 1952, the concept of a frame has received much attention in the mathematical community and has inspired several generalizations. The focus of this thesis is on the concept of an operator-valued frame (OVF) and a more general concept called herein an operator-valued frame associated with a measure space (MS-OVF), which is sometimes called a continuous g-frame. The first of two main topics explored in this thesis is the relationship between MS-OVFs and objects prominent in quantum information theory called positive operator-valued measures (POVMs). It has been observed that every MS-OVF gives rise to a POVM with invertible total variation in a natural way. The first main result of this thesis is a characterization of which POVMs arise in this way, a result obtained by extending certain existing Radon-Nikodym theorems for POVMs. The second main topic investigated in this thesis is the role of the theory of unitary representations of a Lie group G in the construction of OVFs for the L^2-space of a relatively compact subset of G. For G=R, Duffin and Schaeffer have given general conditions that ensure a sequence of (one-dimensional) representations of G, restricted to (-1/2,1/2), forms a frame for L^{2}(-1/2,1/2), and similar conditions exist for G=R^n. The second main result of this thesis expresses conditions related to Duffin and Schaeffer's for two more particular Lie groups: the Euclidean motion group on R^2 and the (2n+1)-dimensional Heisenberg group. This proceeds in two steps. First, for a Lie group admitting a uniform lattice and an appropriate relatively compact subset E of G, the Selberg Trace Formula is used to obtain a Parseval OVF for L^{2}(E) that is expressed in terms of irreducible representations of G. Second, for the two particular Lie groups an appropriate set E is found, and it is shown that for each of these groups, with suitably parametrized unitary duals, the Parseval OVF remains an OVF when perturbations are made to the parameters of the included representations.
ContributorsRobinson, Benjamin (Author) / Cochran, Douglas (Thesis advisor) / Moran, William (Thesis advisor) / Boggess, Albert (Committee member) / Milner, Fabio (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2014
153035-Thumbnail Image.png
Description
Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time

Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time and are well accepted in the industry, but are slow for the present day manufacturing. On the other hand CMMs are relatively fast, but these methods are not well established yet. The major problem that needs to be addressed is the type of feature fitting algorithm used for evaluating tolerances. In a CMM the use of different feature fitting algorithms on a feature gives different values, and there is no standard that describes the type of feature fitting algorithm to be used for a specific tolerance. Our research is focused on identifying the feature fitting algorithm that is best used for each type of tolerance. Each algorithm is identified as the one to best represent the interpretation of geometric control as defined by the ASME Y14.5 standard and on the manual methods used for the measurement of a specific tolerance type. Using these algorithms normative procedures for CMMs are proposed for verifying tolerances. The proposed normative procedures are implemented as software. Then the procedures are verified by comparing the results from software with that of manual measurements.

To aid this research a library of feature fitting algorithms is developed in parallel. The library consists of least squares, Chebyshev and one sided fits applied on the features of line, plane, circle and cylinder. The proposed normative procedures are useful for evaluating tolerances in CMMs. The results evaluated will be in accordance to the standard. The ambiguity in choosing the algorithms is prevented. The software developed can be used in quality control for inspection purposes.
ContributorsVemulapalli, Prabath (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Takahashi, Timothy (Committee member) / Arizona State University (Publisher)
Created2014
154532-Thumbnail Image.png
Description
Modern systems that measure dynamical phenomena often have limitations as to how many sensors can operate at any given time step. This thesis considers a sensor scheduling problem in which the source of a diffusive phenomenon is to be localized using single point measurements of its concentration. With a

Modern systems that measure dynamical phenomena often have limitations as to how many sensors can operate at any given time step. This thesis considers a sensor scheduling problem in which the source of a diffusive phenomenon is to be localized using single point measurements of its concentration. With a linear diffusion model, and in the absence of noise, classical observability theory describes whether or not the system's initial state can be deduced from a given set of linear measurements. However, it does not describe to what degree the system is observable. Different metrics of observability have been proposed in literature to address this issue. Many of these methods are based on choosing optimal or sub-optimal sensor schedules from a predetermined collection of possibilities. This thesis proposes two greedy algorithms for a one-dimensional and two-dimensional discrete diffusion processes. The first algorithm considers a deterministic linear dynamical system and deterministic linear measurements. The second algorithm considers noise on the measurements and is compared to a Kalman filter scheduling method described in published work.
ContributorsNajam, Anbar (Author) / Cochran, Douglas (Thesis advisor) / Turaga, Pavan (Committee member) / Wang, Chao (Committee member) / Arizona State University (Publisher)
Created2016
154471-Thumbnail Image.png
Description
The data explosion in the past decade is in part due to the widespread use of rich sensors that measure various physical phenomenon -- gyroscopes that measure orientation in phones and fitness devices, the Microsoft Kinect which measures depth information, etc. A typical application requires inferring the underlying physical phenomenon

The data explosion in the past decade is in part due to the widespread use of rich sensors that measure various physical phenomenon -- gyroscopes that measure orientation in phones and fitness devices, the Microsoft Kinect which measures depth information, etc. A typical application requires inferring the underlying physical phenomenon from data, which is done using machine learning. A fundamental assumption in training models is that the data is Euclidean, i.e. the metric is the standard Euclidean distance governed by the L-2 norm. However in many cases this assumption is violated, when the data lies on non Euclidean spaces such as Riemannian manifolds. While the underlying geometry accounts for the non-linearity, accurate analysis of human activity also requires temporal information to be taken into account. Human movement has a natural interpretation as a trajectory on the underlying feature manifold, as it evolves smoothly in time. A commonly occurring theme in many emerging problems is the need to \emph{represent, compare, and manipulate} such trajectories in a manner that respects the geometric constraints. This dissertation is a comprehensive treatise on modeling Riemannian trajectories to understand and exploit their statistical and dynamical properties. Such properties allow us to formulate novel representations for Riemannian trajectories. For example, the physical constraints on human movement are rarely considered, which results in an unnecessarily large space of features, making search, classification and other applications more complicated. Exploiting statistical properties can help us understand the \emph{true} space of such trajectories. In applications such as stroke rehabilitation where there is a need to differentiate between very similar kinds of movement, dynamical properties can be much more effective. In this regard, we propose a generalization to the Lyapunov exponent to Riemannian manifolds and show its effectiveness for human activity analysis. The theory developed in this thesis naturally leads to several benefits in areas such as data mining, compression, dimensionality reduction, classification, and regression.
ContributorsAnirudh, Rushil (Author) / Turaga, Pavan (Thesis advisor) / Cochran, Douglas (Committee member) / Runger, George C. (Committee member) / Taylor, Thomas (Committee member) / Arizona State University (Publisher)
Created2016
168276-Thumbnail Image.png
Description
This thesis develops geometrically and statistically rigorous foundations for multivariate analysis and bayesian inference posed on grassmannian manifolds. Requisite to the development of key elements of statistical theory in a geometric realm are closed-form, analytic expressions for many differential geometric objects, e.g., tangent vectors, metrics, geodesics, volume forms. The first

This thesis develops geometrically and statistically rigorous foundations for multivariate analysis and bayesian inference posed on grassmannian manifolds. Requisite to the development of key elements of statistical theory in a geometric realm are closed-form, analytic expressions for many differential geometric objects, e.g., tangent vectors, metrics, geodesics, volume forms. The first part of this thesis is devoted to a mathematical exposition of these. In particular, it leverages the classical work of Alan James to derive the exterior calculus of differential forms on special grassmannians for invariant measures with respect to which integration is permissible. Motivated by various multi-­sensor remote sensing applications, the second part of this thesis describes the problem of recursively estimating the state of a dynamical system propagating on the Grassmann manifold. Fundamental to the bayesian treatment of this problem is the choice of a suitable probability distribution to a priori model the state. Using the Method of Maximum Entropy, a derivation of maximum-­entropy probability distributions on the state space that uses the developed geometric theory is characterized. Statistical analyses of these distributions, including parameter estimation, are also presented. These probability distributions and the statistical analysis thereof are original contributions. Using the bayesian framework, two recursive estimation algorithms, both of which rely on noisy measurements on (special cases of) the Grassmann manifold, are the devised and implemented numerically. The first is applied to an idealized scenario, the second to a more practically motivated scenario. The novelty of both of these algorithms lies in the use of thederived maximum­entropy probability measures as models for the priors. Numerical simulations demonstrate that, under mild assumptions, both estimation algorithms produce accurate and statistically meaningful outputs. This thesis aims to chart the interface between differential geometry and statistical signal processing. It is my deepest hope that the geometric-statistical approach underlying this work facilitates and encourages the development of new theories and new computational methods in geometry. Application of these, in turn, will bring new insights and bettersolutions to a number of extant and emerging problems in signal processing.
ContributorsCrider, Lauren N (Author) / Cochran, Douglas (Thesis advisor) / Kotschwar, Brett (Committee member) / Scharf, Louis (Committee member) / Taylor, Thomas (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2021
187441-Thumbnail Image.png
Description
During the inversion of discrete linear systems, noise in data can be amplified and result in meaningless solutions. To combat this effect, characteristics of solutions that are considered desirable are mathematically implemented during inversion. This is a process called regularization. The influence of the provided prior information is controlled by

During the inversion of discrete linear systems, noise in data can be amplified and result in meaningless solutions. To combat this effect, characteristics of solutions that are considered desirable are mathematically implemented during inversion. This is a process called regularization. The influence of the provided prior information is controlled by the introduction of non-negative regularization parameter(s). Many methods are available for both the selection of appropriate regularization parame- ters and the inversion of the discrete linear system. Generally, for a single problem there is just one regularization parameter. Here, a learning approach is considered to identify a single regularization parameter based on the use of multiple data sets de- scribed by a linear system with a common model matrix. The situation with multiple regularization parameters that weight different spectral components of the solution is considered as well. To obtain these multiple parameters, standard methods are modified for identifying the optimal regularization parameters. Modifications of the unbiased predictive risk estimation, generalized cross validation, and the discrepancy principle are derived for finding spectral windowing regularization parameters. These estimators are extended for finding the regularization parameters when multiple data sets with common system matrices are available. Statistical analysis of these estima- tors is conducted for real and complex transformations of data. It is demonstrated that spectral windowing regularization parameters can be learned from these new esti- mators applied for multiple data and with multiple windows. Numerical experiments evaluating these new methods demonstrate that these modified methods, which do not require the use of true data for learning regularization parameters, are effective and efficient, and perform comparably to a supervised learning method based on es- timating the parameters using true data. The theoretical developments are validated for one and two dimensional image deblurring. It is verified that the obtained estimates of spectral windowing regularization parameters can be used effectively on validation data sets that are separate from the training data, and do not require known data.
ContributorsByrne, Michael John (Author) / Renaut, Rosemary (Thesis advisor) / Cochran, Douglas (Committee member) / Espanol, Malena (Committee member) / Jackiewicz, Zdzislaw (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2023