Matching Items (38)
Filtering by

Clear all filters

150038-Thumbnail Image.png
Description
In a large network (graph) it would be desirable to guarantee the existence of some local property based only on global knowledge of the network. Consider the following classical example: how many connections are necessary to guarantee that the network contains three nodes which are pairwise adjacent? It turns out

In a large network (graph) it would be desirable to guarantee the existence of some local property based only on global knowledge of the network. Consider the following classical example: how many connections are necessary to guarantee that the network contains three nodes which are pairwise adjacent? It turns out that more than n^2/4 connections are needed, and no smaller number will suffice in general. Problems of this type fall into the category of ``extremal graph theory.'' Generally speaking, extremal graph theory is the study of how global parameters of a graph are related to local properties. This dissertation deals with the relationship between minimum degree conditions of a host graph G and the property that G contains a specified spanning subgraph (or class of subgraphs). The goal is to find the optimal minimum degree which guarantees the existence of a desired spanning subgraph. This goal is achieved in four different settings, with the main tools being Szemeredi's Regularity Lemma; the Blow-up Lemma of Komlos, Sarkozy, and Szemeredi; and some basic probabilistic techniques.
ContributorsDeBiasio, Louis (Author) / Kierstead, Henry A (Thesis advisor) / Czygrinow, Andrzej (Thesis advisor) / Hurlbert, Glenn (Committee member) / Kadell, Kevin (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2011
151429-Thumbnail Image.png
Description
A central concept of combinatorics is partitioning structures with given constraints. Partitions of on-line posets and on-line graphs, which are dynamic versions of the more familiar static structures posets and graphs, are examined. In the on-line setting, vertices are continually added to a poset or graph while a chain partition

A central concept of combinatorics is partitioning structures with given constraints. Partitions of on-line posets and on-line graphs, which are dynamic versions of the more familiar static structures posets and graphs, are examined. In the on-line setting, vertices are continually added to a poset or graph while a chain partition or coloring (respectively) is maintained. %The optima of the static cases cannot be achieved in the on-line setting. Both upper and lower bounds for the optimum of the number of chains needed to partition a width $w$ on-line poset exist. Kierstead's upper bound of $\frac{5^w-1}{4}$ was improved to $w^{14 \lg w}$ by Bosek and Krawczyk. This is improved to $w^{3+6.5 \lg w}$ by employing the First-Fit algorithm on a family of restricted posets (expanding on the work of Bosek and Krawczyk) . Namely, the family of ladder-free posets where the $m$-ladder is the transitive closure of the union of two incomparable chains $x_1\le\dots\le x_m$, $y_1\le\dots\le y_m$ and the set of comparabilities $\{x_1\le y_1,\dots, x_m\le y_m\}$. No upper bound on the number of colors needed to color a general on-line graph exists. To lay this fact plain, the performance of on-line coloring of trees is shown to be particularly problematic. There are trees that require $n$ colors to color on-line for any positive integer $n$. Furthermore, there are trees that usually require many colors to color on-line even if they are presented without any particular strategy. For restricted families of graphs, upper and lower bounds for the optimum number of colors needed to maintain an on-line coloring exist. In particular, circular arc graphs can be colored on-line using less than 8 times the optimum number from the static case. This follows from the work of Pemmaraju, Raman, and Varadarajan in on-line coloring of interval graphs.
ContributorsSmith, Matthew Earl (Author) / Kierstead, Henry A (Thesis advisor) / Colbourn, Charles (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Arizona State University (Publisher)
Created2012
151965-Thumbnail Image.png
Description
Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In

Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In particular, the focus was on the stable patterns of reasoning, known as ways of thinking, which students applied in a variety of combinatorial situations and tasks. This study catalogued students' ways of thinking about solution sets as they progressed through an instructional sequence. In addition, the relationships between the catalogued ways of thinking were explored. Further, the study investigated the challenges students experienced as they interacted with the tasks and instructional interventions, and how students' ways of thinking evolved as these challenges were overcome. Finally, it examined the role of instruction in guiding students to develop and extend their ways of thinking. Two pairs of undergraduate students with no formal experience with combinatorics participated in one of the two consecutive teaching experiments conducted in Spring 2012. Many ways of thinking emerged through the grounded theory analysis of the data, but only eight were identified as robust. These robust ways of thinking were classified into three categories: Subsets, Odometer, and Problem Posing. The Subsets category encompasses two ways of thinking, both of which ultimately involve envisioning the solution set as the union of subsets. The three ways of thinking in Odometer category involve holding an item or a set of items constant and systematically varying the other items involved in the counting process. The ways of thinking belonging to Problem Posing category involve spontaneously posing new, related combinatorics problems and finding relationships between the solution sets of the original and the new problem. The evolution of students' ways of thinking in the Problem Posing category was analyzed. This entailed examining the perturbation experienced by students and the resulting accommodation of their thinking. It was found that such perturbation and its resolution was often the result of an instructional intervention. Implications for teaching practice are discussed.
ContributorsHalani, Aviva (Author) / Roh, Kyeong Hah (Thesis advisor) / Fishel, Susanna (Committee member) / Saldanha, Luis (Committee member) / Thompson, Patrick (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2013
152048-Thumbnail Image.png
Description
A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices of $G$ then the $H$-tiling is a perfect $H$-tiling or

A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices of $G$ then the $H$-tiling is a perfect $H$-tiling or an $H$-factor. A goal of this study is to extend theorems on sufficient minimum degree conditions for perfect tilings in graphs to directed graphs. Corrádi and Hajnal proved that every graph $G$ on $3k$ vertices with minimum degree $delta(G)ge2k$ has a $K_3$-factor, where $K_s$ is the complete graph on $s$ vertices. The following theorem extends this result to directed graphs: If $D$ is a directed graph on $3k$ vertices with minimum total degree $delta(D)ge4k-1$ then $D$ can be partitioned into $k$ parts each of size $3$ so that all of parts contain a transitive triangle and $k-1$ of the parts also contain a cyclic triangle. The total degree of a vertex $v$ is the sum of $d^-(v)$ the in-degree and $d^+(v)$ the out-degree of $v$. Note that both orientations of $C_3$ are considered: the transitive triangle and the cyclic triangle. The theorem is best possible in that there are digraphs that meet the minimum degree requirement but have no cyclic triangle factor. The possibility of added a connectivity requirement to ensure a cycle triangle factor is also explored. Hajnal and Szemerédi proved that if $G$ is a graph on $sk$ vertices and $delta(G)ge(s-1)k$ then $G$ contains a $K_s$-factor. As a possible extension of this celebrated theorem to directed graphs it is proved that if $D$ is a directed graph on $sk$ vertices with $delta(D)ge2(s-1)k-1$ then $D$ contains $k$ disjoint transitive tournaments on $s$ vertices. We also discuss tiling directed graph with other tournaments. This study also explores minimum total degree conditions for perfect directed cycle tilings and sufficient semi-degree conditions for a directed graph to contain an anti-directed Hamilton cycle. The semi-degree of a vertex $v$ is $min{d^+(v), d^-(v)}$ and an anti-directed Hamilton cycle is a spanning cycle in which no pair of consecutive edges form a directed path.
ContributorsMolla, Theodore (Author) / Kierstead, Henry A (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Spielberg, Jack (Committee member) / Arizona State University (Publisher)
Created2013
152050-Thumbnail Image.png
Description
In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group)

In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group) be the $\epsilon_i$-eigenspace component of the $p$-Sylow subgroup of the class group of the field at the $m$-th level in a $\mathbb{Z}_p$-extension; and let $IACG^i_m$ (Iwasawa analytic class group) be ${\mathbb{Z}_p[[T]]/((1+T)^{p^m}-1,f(T,\omega^{1-i}))}$, where $f$ is the associated Iwasawa power series. It is expected that $CG_m^i$ and $IACG^i_m$ be isomorphic, providing us with a powerful connection between algebraic and analytic techniques; however, as of yet, this isomorphism is unestablished in general. I consider the existence and the properties of an exact sequence $$0\longrightarrow\ker{\longrightarrow}CG_m^i{\longrightarrow}IACG_m^i{\longrightarrow}\textrm{coker}\longrightarrow0.$$ In the case of a $\mathbb{Z}_p$-extension where the Main Conjecture is established, there exists a pseudo-isomorphism between the respective inverse limits of $CG_m^i$ and $IACG_m^i$. I consider conditions for when such a pseudo-isomorphism immediately gives the existence of the desired exact sequence, and I also consider work-around methods that preserve cardinality for otherwise. However, I primarily focus on constructing conditions to verify if a given $m$ is sufficiently large that the kernel and cokernel of the above exact sequence have become well-behaved, providing similarity of growth both in the size and in the structure of $CG_m^i$ and $IACG_m^i$; as well as conditions to determine if any such $m$ exists. The primary motivating idea is that if $IACG_m^i$ is relatively easy to work with, and if the relationship between $CG_m^i$ and $IACG_m^i$ is understood; then $CG_m^i$ becomes easier to work with. Moreover, while the motivating framework is stated concretely in terms of the cyclotomic $\mathbb{Z}_p$-extension of $p$-power roots of unity, all results are generally applicable to arbitrary $\mathbb{Z}_p$-extensions as they are developed in terms of Iwasawa-Theory-inspired, yet abstracted, algebraic results on maps between inverse limits.
ContributorsElledge, Shawn Michael (Author) / Childress, Nancy (Thesis advisor) / Bremner, Andrew (Committee member) / Fishel, Susanna (Committee member) / Jones, John (Committee member) / Paupert, Julien (Committee member) / Arizona State University (Publisher)
Created2013
151578-Thumbnail Image.png
Description
Every graph can be colored with one more color than its maximum degree. A well-known theorem of Brooks gives the precise conditions under which a graph can be colored with maximum degree colors. It is natural to ask for the required conditions on a graph to color with one less

Every graph can be colored with one more color than its maximum degree. A well-known theorem of Brooks gives the precise conditions under which a graph can be colored with maximum degree colors. It is natural to ask for the required conditions on a graph to color with one less color than the maximum degree; in 1977 Borodin and Kostochka conjectured a solution for graphs with maximum degree at least 9: as long as the graph doesn't contain a maximum-degree-sized clique, it can be colored with one fewer than the maximum degree colors. This study attacks the conjecture on multiple fronts. The first technique is an extension of a vertex shuffling procedure of Catlin and is used to prove the conjecture for graphs with edgeless high vertex subgraphs. This general approach also bears more theoretical fruit. The second technique is an extension of a method Kostochka used to reduce the Borodin-Kostochka conjecture to the maximum degree 9 case. Results on the existence of independent transversals are used to find an independent set intersecting every maximum clique in a graph. The third technique uses list coloring results to exclude induced subgraphs in a counterexample to the conjecture. The classification of such excludable graphs that decompose as the join of two graphs is the backbone of many of the results presented here. The fourth technique uses the structure theorem for quasi-line graphs of Chudnovsky and Seymour in concert with the third technique to prove the Borodin-Kostochka conjecture for claw-free graphs. The fifth technique adds edges to proper induced subgraphs of a minimum counterexample to gain control over the colorings produced by minimality. The sixth technique adapts a recoloring technique originally developed for strong coloring by Haxell and by Aharoni, Berger and Ziv to general coloring. Using this recoloring technique, the Borodin-Kostochka conjectured is proved for graphs where every vertex is in a large clique. The final technique is naive probabilistic coloring as employed by Reed in the proof of the Borodin-Kostochka conjecture for large maximum degree. The technique is adapted to prove the Borodin-Kostochka conjecture for list coloring for large maximum degree.
ContributorsRabern, Landon (Author) / Kierstead, Henry (Thesis advisor) / Colbourn, Charles (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Arizona State University (Publisher)
Created2013
150637-Thumbnail Image.png
Description
Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.
ContributorsHan, Zhun (Author) / Smith, Hal (Thesis advisor) / Armbruster, Dieter (Committee member) / Kawski, Matthias (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2012
151231-Thumbnail Image.png
Description
Gray codes are perhaps the best known structures for listing sequences of combinatorial objects, such as binary strings. Simply defined as a minimal change listing, Gray codes vary greatly both in structure and in the types of objects that they list. More specific types of Gray codes are universal cycles

Gray codes are perhaps the best known structures for listing sequences of combinatorial objects, such as binary strings. Simply defined as a minimal change listing, Gray codes vary greatly both in structure and in the types of objects that they list. More specific types of Gray codes are universal cycles and overlap sequences. Universal cycles are Gray codes on a set of strings of length n in which the first n-1 letters of one object are the same as the last n-1 letters of its predecessor in the listing. Overlap sequences allow this overlap to vary between 1 and n-1. Some of our main contributions to the areas of Gray codes and universal cycles include a new Gray code algorithm for fixed weight m-ary words, and results on the existence of universal cycles for weak orders on [n]. Overlap cycles are a relatively new structure with very few published results. We prove the existence of s-overlap cycles for k-permutations of [n], which has been an open research problem for several years, as well as constructing 1- overlap cycles for Steiner triple and quadruple systems of every order. Also included are various other results of a similar nature covering other structures such as binary strings, m-ary strings, subsets, permutations, weak orders, partitions, and designs. These listing structures lend themselves readily to some classes of combinatorial objects, such as binary n-tuples and m-ary n-tuples. Others require more work to find an appropriate structure, such as k-subsets of an n-set, weak orders, and designs. Still more require a modification in the representation of the objects to fit these structures, such as partitions. Determining when and how we can fit these sets of objects into our three listing structures is the focus of this dissertation.
ContributorsHoran, Victoria E (Author) / Hurlbert, Glenn H. (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Colbourn, Charles (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
137413-Thumbnail Image.png
Description
In this research we consider stochastic models of Glioblastoma Multiforme brain tumors. We first look at a model by K. Swanson et al., which describes the dynamics as random diffusion plus deterministic logistic growth. We introduce a stochastic component in the logistic growth in the form of a random growth

In this research we consider stochastic models of Glioblastoma Multiforme brain tumors. We first look at a model by K. Swanson et al., which describes the dynamics as random diffusion plus deterministic logistic growth. We introduce a stochastic component in the logistic growth in the form of a random growth rate defined by a Poisson process. We show that this stochastic logistic growth model leads to a more accurate evaluation of the tumor growth compared its deterministic counterpart. We also discuss future plans to incorporate individual patient geometry, extend the model to three dimensions and to incorporate effects of different treatments into our model, in collaboration with a local hospital.
ContributorsManning, Michael Clare (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Gardner, Carl (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Letters and Sciences (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2013-12
136236-Thumbnail Image.png
Description
Lights Out is a puzzle game where the goal is to turn off all the lights on a nxn board starting from a random configuration. In order to find the solution of a configuration, the game is constructed using a matrix basis in the span of the field Z mod

Lights Out is a puzzle game where the goal is to turn off all the lights on a nxn board starting from a random configuration. In order to find the solution of a configuration, the game is constructed using a matrix basis in the span of the field Z mod 2.This the game can be modeled by the system Ap=s which will be the center of the investigation when determining the solvability for any n×n board since A is not always invertable leading to some interesting cases. The goal of this thesis was to construct a model that will allow the player to solve for the pushes to attain the zero-state for an nxn system. Constructing the model gave a procedure that will allow to solve the puzzle game. The procedure presented here first uses a simple clearing technique (valid for any board size) to turn off all the lights except in the last row, which we call the standard-clear. The heart of the technique, is to give a way to use the information about which lights remain lit in the last row to determine which switches in the first row need to be pushed before the standard-clear. This part of the solution algorithm we call the first row adjustment, and it depends heavily on the specific board size n of the problem. Finally, after these first row pushes are made, the standard clear will now turn off all the lights including (seemingly magically) the last row. Thus the solution to the Lights Out puzzle of a given size is reduced to finding a first row adjustment for that size. (Please refer to the actual thesis for the full abstract)
Created2015-05