Matching Items (57)
Filtering by

Clear all filters

152050-Thumbnail Image.png
Description
In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group)

In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group) be the $\epsilon_i$-eigenspace component of the $p$-Sylow subgroup of the class group of the field at the $m$-th level in a $\mathbb{Z}_p$-extension; and let $IACG^i_m$ (Iwasawa analytic class group) be ${\mathbb{Z}_p[[T]]/((1+T)^{p^m}-1,f(T,\omega^{1-i}))}$, where $f$ is the associated Iwasawa power series. It is expected that $CG_m^i$ and $IACG^i_m$ be isomorphic, providing us with a powerful connection between algebraic and analytic techniques; however, as of yet, this isomorphism is unestablished in general. I consider the existence and the properties of an exact sequence $$0\longrightarrow\ker{\longrightarrow}CG_m^i{\longrightarrow}IACG_m^i{\longrightarrow}\textrm{coker}\longrightarrow0.$$ In the case of a $\mathbb{Z}_p$-extension where the Main Conjecture is established, there exists a pseudo-isomorphism between the respective inverse limits of $CG_m^i$ and $IACG_m^i$. I consider conditions for when such a pseudo-isomorphism immediately gives the existence of the desired exact sequence, and I also consider work-around methods that preserve cardinality for otherwise. However, I primarily focus on constructing conditions to verify if a given $m$ is sufficiently large that the kernel and cokernel of the above exact sequence have become well-behaved, providing similarity of growth both in the size and in the structure of $CG_m^i$ and $IACG_m^i$; as well as conditions to determine if any such $m$ exists. The primary motivating idea is that if $IACG_m^i$ is relatively easy to work with, and if the relationship between $CG_m^i$ and $IACG_m^i$ is understood; then $CG_m^i$ becomes easier to work with. Moreover, while the motivating framework is stated concretely in terms of the cyclotomic $\mathbb{Z}_p$-extension of $p$-power roots of unity, all results are generally applicable to arbitrary $\mathbb{Z}_p$-extensions as they are developed in terms of Iwasawa-Theory-inspired, yet abstracted, algebraic results on maps between inverse limits.
ContributorsElledge, Shawn Michael (Author) / Childress, Nancy (Thesis advisor) / Bremner, Andrew (Committee member) / Fishel, Susanna (Committee member) / Jones, John (Committee member) / Paupert, Julien (Committee member) / Arizona State University (Publisher)
Created2013
153445-Thumbnail Image.png
Description
In 1984, Sinnott used $p$-adic measures on $\mathbb{Z}_p$ to give a new proof of the Ferrero-Washington Theorem for abelian number fields by realizing $p$-adic $L$-functions as (essentially) the $Gamma$-transform of certain $p$-adic rational function measures. Shortly afterward, Gillard and Schneps independently adapted Sinnott's techniques to the case of $p$-adic

In 1984, Sinnott used $p$-adic measures on $\mathbb{Z}_p$ to give a new proof of the Ferrero-Washington Theorem for abelian number fields by realizing $p$-adic $L$-functions as (essentially) the $Gamma$-transform of certain $p$-adic rational function measures. Shortly afterward, Gillard and Schneps independently adapted Sinnott's techniques to the case of $p$-adic $L$-functions associated to elliptic curves with complex multiplication (CM) by realizing these $p$-adic $L$-functions as $Gamma$-transforms of certain $p$-adic rational function measures. The results in the CM case give the vanishing of the Iwasawa $mu$-invariant for certain $mathbb{Z}_p$-extensions of imaginary quadratic fields constructed from torsion points of CM elliptic curves.

In this thesis, I develop the theory of $p$-adic measures on $mathbb{Z}_p^d$, with particular interest given to the case of $d>1$. Although I introduce these measures within the context of $p$-adic integration, this study includes a strong emphasis on the interpretation of $p$-adic measures as $p$-adic power series. With this dual perspective, I describe $p$-adic analytic operations as maps on power series; the most important of these operations is the multivariate $Gamma$-transform on $p$-adic measures.

This thesis gives new significance to product measures, and in particular to the use of product measures to construct measures on $mathbb{Z}_p^2$ from measures on $mathbb{Z}_p$. I introduce a subring of pseudo-polynomial measures on $mathbb{Z}_p^2$ which is closed under the standard operations on measures, including the $Gamma$-transform. I obtain results on the Iwasawa-invariants of such pseudo-polynomial measures, and use these results to deduce certain continuity results for the $Gamma$-transform. As an application, I establish the vanishing of the Iwasawa $mu$-invariant of Yager's two-variable $p$-adic $L$-function from measure theoretic considerations.
ContributorsZinzer, Scott Michael (Author) / Childress, Nancy (Thesis advisor) / Bremner, Andrew (Committee member) / Fishel, Susanna (Committee member) / Jones, John (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2015
157198-Thumbnail Image.png
Description
In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an analogous hybridization technique exists for complex hyperbolic lattices, because certain geometric obstructions make it unclear how to adapt this technique.

In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an analogous hybridization technique exists for complex hyperbolic lattices, because certain geometric obstructions make it unclear how to adapt this technique. This thesis explores one possible construction (originally due to Hunt) in depth and uses it to produce arithmetic lattices, non-arithmetic lattices, and thin subgroups in SU(2,1).
ContributorsWells, Joseph (Author) / Paupert, Julien (Thesis advisor) / Kotschwar, Brett (Committee member) / Childress, Nancy (Committee member) / Fishel, Susanna (Committee member) / Kawski, Matthias (Committee member) / Arizona State University (Publisher)
Created2019
157261-Thumbnail Image.png
Description
Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an area extensively studied by the great mathematicians of the seventeenth

Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an area extensively studied by the great mathematicians of the seventeenth century, including Euler and Fermat.

The modern approach is to treat the equations as defining geometric objects, curves, surfaces, etc. The theory of elliptic curves (or curves of genus 1, which are much used in modern cryptography) was developed extensively in the twentieth century, and has had great application to Diophantine equations. This theory is used in application to the problems studied in this thesis. This thesis studies some curves of high genus, and possible solutions in both rationals and in algebraic number fields, generalizes some old results and gives answers to some open problems in the literature. The methods involve known techniques together with some ingenious tricks. For example, the equations $y^2=x^6+k$, $k=-39,\,-47$, the two previously unsolved cases for $|k|<50$, are solved using algebraic number theory and the ‘elliptic Chabauty’ method. The thesis also studies the genus three quartic curves $F(x^2,y^2,z^2)=0$ where F is a homogeneous quadratic form, and extend old results of Cassels, and Bremner. It is a very delicate matter to find such curves that have no rational points, yet which do have points in odd-degree extension fields of the rationals.

The principal results of the thesis are related to surfaces where the theory is much less well known. In particular, the thesis studies some specific families of surfaces, and give a negative answer to a question in the literature regarding representation of integers n in the form $n=(x+y+z+w)(1/x+1/y+1/z+1/w).$ Further, an example, the first such known, of a quartic surface $x^4+7y^4=14z^4+18w^4$ is given with remarkable properties: it is everywhere locally solvable, yet has no non-zero rational point, despite having a point in (non-trivial) odd-degree extension fields of the rationals. The ideas here involve manipulation of the Hilbert symbol, together with the theory of elliptic curves.
ContributorsNguyen, Xuan Tho (Author) / Bremner, Andrew (Thesis advisor) / Childress, Nancy (Committee member) / Jones, John (Committee member) / Quigg, John (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2019
135327-Thumbnail Image.png
Description
A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the Kelvin-Helmholtz instability, and the global shallow water spectral model to simulate the nonlinear evolution of twin tropical cyclones. The leapfrog

A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the Kelvin-Helmholtz instability, and the global shallow water spectral model to simulate the nonlinear evolution of twin tropical cyclones. The leapfrog scheme leads to computational modes in the solutions to highly nonlinear systems, and time-filters are often used to damp these modes. The proposed filter damps the computational modes without appreciably degrading the physical mode. Its performance in these metrics is superior to the second-order time-filtered leapfrog scheme developed by Robert and Asselin.
Created2016-05
135651-Thumbnail Image.png
Description
Honey bees (Apis mellifera) are responsible for pollinating nearly 80\% of all pollinated plants, meaning humans depend on honey bees to pollinate many staple crops. The success or failure of a colony is vital to global food production. There are various complex factors that can contribute to a colony's failure,

Honey bees (Apis mellifera) are responsible for pollinating nearly 80\% of all pollinated plants, meaning humans depend on honey bees to pollinate many staple crops. The success or failure of a colony is vital to global food production. There are various complex factors that can contribute to a colony's failure, including pesticides. Neonicotoids are a popular pesticide that have been used in recent times. In this study we concern ourselves with pesticides and its impact on honey bee colonies. Previous investigations that we draw significant inspiration from include Khoury et Al's \emph{A Quantitative Model of Honey Bee Colony Population Dynamics}, Henry et Al's \emph{A Common Pesticide Decreases Foraging Success and Survival in Honey Bees}, and Brown's \emph{ Mathematical Models of Honey Bee Populations: Rapid Population Decline}. In this project we extend a mathematical model to investigate the impact of pesticides on a honey bee colony, with birth rates and death rates being dependent on pesticides, and we see how these death rates influence the growth of a colony. Our studies have found an equilibrium point that depends on pesticides. Trace amounts of pesticide are detrimental as they not only affect death rates, but birth rates as well.
ContributorsSalinas, Armando (Author) / Vaz, Paul (Thesis director) / Jones, Donald (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136625-Thumbnail Image.png
Description
A Guide to Financial Mathematics is a comprehensive and easy-to-use study guide for students studying for the one of the first actuarial exams, Exam FM. While there are many resources available to students to study for these exams, this study is free to the students and offers an approach to

A Guide to Financial Mathematics is a comprehensive and easy-to-use study guide for students studying for the one of the first actuarial exams, Exam FM. While there are many resources available to students to study for these exams, this study is free to the students and offers an approach to the material similar to that of which is presented in class at ASU. The guide is available to students and professors in the new Actuarial Science degree program offered by ASU. There are twelve chapters, including financial calculator tips, detailed notes, examples, and practice exercises. Included at the end of the guide is a list of referenced material.
ContributorsDougher, Caroline Marie (Author) / Milovanovic, Jelena (Thesis director) / Boggess, May (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136691-Thumbnail Image.png
Description
Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has

Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has size close to or equal to the minimum possible. The construction of such permutation coverings has proven to be computationally difficult. While many examples for permutations of small length have been found, and strong asymptotic behavior is known, there are few explicit constructions for permutations of intermediate lengths. Most of these are generated from scratch using greedy algorithms. We explore a different approach here. Starting with a set of permutations with the desired coverage properties, we compute local changes to individual permutations that retain the total coverage of the set. By choosing these local changes so as to make one permutation less "essential" in maintaining the coverage of the set, our method attempts to make a permutation completely non-essential, so it can be removed without sacrificing total coverage. We develop a post-optimization method to do this and present results on sequence covering arrays and other types of permutation covering problems demonstrating that it is surprisingly effective.
ContributorsMurray, Patrick Charles (Author) / Colbourn, Charles (Thesis director) / Czygrinow, Andrzej (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2014-12
136520-Thumbnail Image.png
Description
Deconvolution of noisy data is an ill-posed problem, and requires some form of regularization to stabilize its solution. Tikhonov regularization is the most common method used, but it depends on the choice of a regularization parameter λ which must generally be estimated using one of several common methods. These methods

Deconvolution of noisy data is an ill-posed problem, and requires some form of regularization to stabilize its solution. Tikhonov regularization is the most common method used, but it depends on the choice of a regularization parameter λ which must generally be estimated using one of several common methods. These methods can be computationally intensive, so I consider their behavior when only a portion of the sampled data is used. I show that the results of these methods converge as the sampling resolution increases, and use this to suggest a method of downsampling to estimate λ. I then present numerical results showing that this method can be feasible, and propose future avenues of inquiry.
ContributorsHansen, Jakob Kristian (Author) / Renaut, Rosemary (Thesis director) / Cochran, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Music (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136526-Thumbnail Image.png
Description
The purpose of this thesis is to examine the events surrounding the creation of the oboe and its rapid spread throughout Europe during the mid to late seventeenth century. The first section describes similar instruments that existed for thousands of years before the invention of the oboe. The following sections

The purpose of this thesis is to examine the events surrounding the creation of the oboe and its rapid spread throughout Europe during the mid to late seventeenth century. The first section describes similar instruments that existed for thousands of years before the invention of the oboe. The following sections examine reasons and methods for the oboe's invention, as well as possible causes of its migration from its starting place in France to other European countries, as well as many other places around the world. I conclude that the oboe was invented to suit the needs of composers in the court of Louis XIV, and that it was brought to other countries by French performers who left France for many reasons, including to escape from the authority of composer Jean-Baptiste Lully and in some cases to promote French culture in other countries.
ContributorsCook, Mary Katherine (Author) / Schuring, Martin (Thesis director) / Micklich, Albie (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Music (Contributor)
Created2015-05