Matching Items (5)
Filtering by

Clear all filters

152531-Thumbnail Image.png
Description
Persistence theory provides a mathematically rigorous answer to the question of population survival by establishing an initial-condition- independent positive lower bound for the long-term value of the population size. This study focuses on the persistence of discrete semiflows in infinite-dimensional state spaces that model the year-to-year dynamics of structured populations.

Persistence theory provides a mathematically rigorous answer to the question of population survival by establishing an initial-condition- independent positive lower bound for the long-term value of the population size. This study focuses on the persistence of discrete semiflows in infinite-dimensional state spaces that model the year-to-year dynamics of structured populations. The map which encapsulates the population development from one year to the next is approximated at the origin (the extinction state) by a linear or homogeneous map. The (cone) spectral radius of this approximating map is the threshold between extinction and persistence. General persistence results are applied to three particular models: a size-structured plant population model, a diffusion model (with both Neumann and Dirichlet boundary conditions) for a dispersing population of males and females that only mate and reproduce once during a very short season, and a rank-structured model for a population of males and females.
ContributorsJin, Wen (Author) / Thieme, Horst (Thesis advisor) / Milner, Fabio (Committee member) / Quigg, John (Committee member) / Smith, Hal (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2014
150637-Thumbnail Image.png
Description
Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.
ContributorsHan, Zhun (Author) / Smith, Hal (Thesis advisor) / Armbruster, Dieter (Committee member) / Kawski, Matthias (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2012
156612-Thumbnail Image.png
Description
The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne diseases (VBDs) remains a subject of considerable debate. This dissertation attempts to contribute to this debate via the use of

The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne diseases (VBDs) remains a subject of considerable debate. This dissertation attempts to contribute to this debate via the use of mathematical (compartmental) modeling and statistical data analysis. In particular, the objective is to find suitable values and/or ranges of the climate variables considered (typically temperature and rainfall) for maximum vector abundance and consequently, maximum transmission intensity of the disease(s) they cause.

Motivated by the fact that understanding the dynamics of disease vector is crucial to understanding the transmission and control of the VBDs they cause, a novel weather-driven deterministic model for the population biology of the mosquito is formulated and rigorously analyzed. Numerical simulations, using relevant weather and entomological data for Anopheles mosquito (the vector for malaria), show that maximum mosquito abundance occurs when temperature and rainfall values lie in the range [20-25]C and [105-115] mm, respectively.

The Anopheles mosquito ecology model is extended to incorporate human dynamics. The resulting weather-driven malaria transmission model, which includes many of the key aspects of malaria (such as disease transmission by asymptomatically-infectious humans, and enhanced malaria immunity due to repeated exposure), was rigorously analyzed. The model which also incorporates the effect of diurnal temperature range (DTR) on malaria transmission dynamics shows that increasing DTR shifts the peak temperature value for malaria transmission from 29C (when DTR is 0C) to about 25C (when DTR is 15C).

Finally, the malaria model is adapted and used to study the transmission dynamics of chikungunya, dengue and Zika, three diseases co-circulating in the Americas caused by the same vector (Aedes aegypti). The resulting model, which is fitted using data from Mexico, is used to assess a few hypotheses (such as those associated with the possible impact the newly-released dengue vaccine will have on Zika) and the impact of variability in climate variables on the dynamics of the three diseases. Suitable temperature and rainfall ranges for the maximum transmission intensity of the three diseases are obtained.
ContributorsOkuneye, Kamaldeen O (Author) / Gumel, Abba B (Thesis advisor) / Kuang, Yang (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Nagy, John (Committee member) / Arizona State University (Publisher)
Created2018
148071-Thumbnail Image.png
Description

Hundreds of thousands of people die annually from malaria; a protozoan of the genus Plasmodium is responsible for this mortality. The Plasmodium parasite undergoes several life stages within the mosquito vector, the transition between which require passage across the lumen of the mosquito midgut. It has been observed that in

Hundreds of thousands of people die annually from malaria; a protozoan of the genus Plasmodium is responsible for this mortality. The Plasmodium parasite undergoes several life stages within the mosquito vector, the transition between which require passage across the lumen of the mosquito midgut. It has been observed that in about 15% of parasites that develop ookinetes in the mosquito abdomen, sporozoites never develop in the salivary glands, indicating that passage across the midgut lumen is a significant barrier in parasite development (Gamage-Mendis et al., 1993). We aim to investigate a possible correlation between passage through the midgut lumen and drug-resistance trends in Plasmodium falciparum parasites. This study contains a total of 1024 Anopheles mosquitoes: 187 Anopheles gambiae and 837 Anopheles funestus samples collected in high malaria transmission areas of Mozambique between March and June of 2016. Sanger sequencing will be used to determine the prevalence of known resistance alleles for anti-malarial drugs: chloroquine resistance transporter (pfcrt), multidrug resistance (pfmdr1) gene, dihydropteroate synthase (pfdhps) and dihydrofolate reductase (pfdhfr). We compare prevalence of resistance between abdomen and head/thorax in order to determine whether drug resistant parasites are disproportionately hindered during their passage through the midgut lumen. A statistically significant difference between resistance alleles in the two studied body sections supports the efficacy of new anti-malarial gene surveillance strategies in areas of high malaria transmission.

ContributorsPhillips, Keeley Isabella (Author) / Huijben, Silvie (Thesis director) / Gile, Gillian (Committee member) / Young, Steven (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
157588-Thumbnail Image.png
Description
The main part of this work establishes existence, uniqueness and regularity properties of measure-valued solutions of a nonlinear hyperbolic conservation law with non-local velocities. Major challenges stem from in- and out-fluxes containing nonzero pure-point parts which cause discontinuities of the velocities. This part is preceded, and motivated, by an extended

The main part of this work establishes existence, uniqueness and regularity properties of measure-valued solutions of a nonlinear hyperbolic conservation law with non-local velocities. Major challenges stem from in- and out-fluxes containing nonzero pure-point parts which cause discontinuities of the velocities. This part is preceded, and motivated, by an extended study which proves that an associated optimal control problem has no optimal $L^1$-solutions that are supported on short time intervals.

The hyperbolic conservation law considered here is a well-established model for a highly re-entrant semiconductor manufacturing system. Prior work established well-posedness for $L^1$-controls and states, and existence of optimal solutions for $L^2$-controls, states, and control objectives. The results on measure-valued solutions presented here reduce to the existing literature in the case of initial state and in-flux being absolutely continuous measures. The surprising well-posedness (in the face of measures containing nonzero pure-point part and discontinuous velocities) is directly related to characteristic features of the model that capture the highly re-entrant nature of the semiconductor manufacturing system.

More specifically, the optimal control problem is to minimize an $L^1$-functional that measures the mismatch between actual and desired accumulated out-flux. The focus is on the transition between equilibria with eventually zero backlog. In the case of a step up to a larger equilibrium, the in-flux not only needs to increase to match the higher desired out-flux, but also needs to increase the mass in the factory and to make up for the backlog caused by an inverse response of the system. The optimality results obtained confirm the heuristic inference that the optimal solution should be an impulsive in-flux, but this is no longer in the space of $L^1$-controls.

The need for impulsive controls motivates the change of the setting from $L^1$-controls and states to controls and states that are Borel measures. The key strategy is to temporarily abandon the Eulerian point of view and first construct Lagrangian solutions. The final section proposes a notion of weak measure-valued solutions and proves existence and uniqueness of such.

In the case of the in-flux containing nonzero pure-point part, the weak solution cannot depend continuously on the time with respect to any norm. However, using semi-norms that are related to the flat norm, a weaker form of continuity of solutions with respect to time is proven. It is conjectured that also a similar weak continuous dependence on initial data holds with respect to a variant of the flat norm.
ContributorsGong, Xiaoqian, Ph.D (Author) / Kawski, Matthias (Thesis advisor) / Kaliszewski, Steven (Committee member) / Motsch, Sebastien (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2019