Matching Items (11)
Filtering by

Clear all filters

149830-Thumbnail Image.png
Description
The purpose of this study was to examine the impact of individualized afterschool tutoring, under federal Supplemental Educational Services (SES), on mathematical and general academic intrinsic motivation and mathematical achievement of at-risk students. The population of this study consisted of two third graders and five fourth graders from an elementary

The purpose of this study was to examine the impact of individualized afterschool tutoring, under federal Supplemental Educational Services (SES), on mathematical and general academic intrinsic motivation and mathematical achievement of at-risk students. The population of this study consisted of two third graders and five fourth graders from an elementary school in the Reynolds School District in Portland, Oregon. One participant was male. The other six were female. Six of the students were Hispanic, and one student was multiethnic. Students' parents enrolled their children in free afterschool tutoring with Mobile Minds Tutoring, an SES provider in the state of Oregon. The participants were given pre- and post-assessments to measure their intrinsic motivation and achievement. The third graders took the Young Children's Academic Intrinsic Motivation Inventory (Y-CAIMI) and the fourth graders took the Children's Academic Intrinsic Motivation Inventory (CAIMI). All students took the Group Mathematics Assessment and Diagnostic Evaluation (GMADE) according to their grade level. The findings from this study are consistent with the literature review, in that individualized tutoring can help increase student motivation and achievement. Six out of the seven students who participated in this study showed an increase in mathematical achievement, and four out of the seven showed an increase in intrinsic motivation.
ContributorsBallou, Cherise (Author) / Middleton, James (Thesis advisor) / Kinach, Barbara (Committee member) / Bitter, Gary (Committee member) / Arizona State University (Publisher)
Created2011
150081-Thumbnail Image.png
Description
A fundamental motivation for this study was the underrepresentation of women in Science, Technology, Engineering and Mathematics careers. There is no doubt women and men can achieve at the same level in Mathematics, yet it is not clear why women are opting out. Adding race to the equation makes the

A fundamental motivation for this study was the underrepresentation of women in Science, Technology, Engineering and Mathematics careers. There is no doubt women and men can achieve at the same level in Mathematics, yet it is not clear why women are opting out. Adding race to the equation makes the underrepresentation more dramatic. Considering the important number of Latinos in the United States, especially in school age, it is relevant to find what reasons could be preventing them from participating in the careers mentioned. This study highlight the experiences young successful Latinas have in school Mathematics and how they shape their identities, to uncover potential conflicts that could later affect their participation in the field. In order to do so the author utilizes feminist approaches, Latino Critical Theory and Critical Race Theory to analyze the stories compiled. The participants were five successful Latinas in Mathematics, part of the honors track in a school in the Southwest of the United States. The theoretical lenses chosen allowed women of color to tell their story, highlighting the intersection of race, gender and socio-economical status as a factor shaping different schooling experiences. The author found that the participants distanced themselves from their home culture and from other girls at times to allow themselves to develop and maintain a successful identity as a Mathematics student. When talking about Latinos and their culture, the participants shared a view of themselves as proud Latinas who would prove others what Latinas can do. During other times while discussing the success of Latinos in Mathematics, they manifested Latinos were lazy and distance themselves from that stereotype. Similar examples about gender and Mathematics can be found in the study. The importance of the family as a motivator for their success was clear, despite the participants' concern that parents cannot offer certain types of help they feel they need. This was manifest in a tension regarding who owns the "right" Mathematics at home. Results showed that successful Latinas in the US may undergo a constant negotiation of conflicting discourses that force them to distance themselves from certain aspects of their culture, gender, and even their families, to maintain an identity of success in mathematics.
ContributorsGuerra Lombardi, Paula Patricia (Author) / Middleton, James (Thesis advisor) / Battey, Daniel (Committee member) / Koblitz, Ann (Committee member) / Flores, Alfinio (Committee member) / Arizona State University (Publisher)
Created2011
151790-Thumbnail Image.png
Description
In 2007, Arizona voters passed House Bill (HB) 2064, a law that fundamentally restructured the Structured English Immersion (SEI) program, putting into place a 4-hour English language development (ELD) block for educating English language learners (ELLs). Under this new language policy, ELL students are segregated from their English-speaking peers to

In 2007, Arizona voters passed House Bill (HB) 2064, a law that fundamentally restructured the Structured English Immersion (SEI) program, putting into place a 4-hour English language development (ELD) block for educating English language learners (ELLs). Under this new language policy, ELL students are segregated from their English-speaking peers to receive a minimum of four hours of instruction in discrete language skills with no contextual or native language support. Furthermore, ELD is separate from content-area instruction, meaning that language and mathematics are taught as two separate entities. While educators and researchers have begun to examine the organizational structure of the 4-hour block curriculum and implications for student learning, there is much to be understood about the extent to which this policy impacts ELLs opportunities to learn mathematics. Using ethnographic methods, this dissertation documents the beliefs and practices of four Arizona teachers in an effort to understand the relationship between language policy and teacher beliefs and practice and how together they coalesce to form learning environments for their ELL students, particularly in mathematics. The findings suggest that the 4-hour block created disparities in opportunities to learn mathematics for students in one Arizona district, depending on teachers' beliefs and the manner in which the policy was enacted, which was, in part, influenced by the State, district, and school. The contrast in cases exemplified the ways in which policy, which was enacted differently in the various classes, restricted teachers' practices, and in some cases resulted in inequitable opportunities to learn mathematics for ELLs.
ContributorsLlamas-Flores, Silvia (Author) / Middleton, James (Thesis advisor) / Battey, Daniel (Committee member) / Sloane, Finbarr (Committee member) / Macswan, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2013
151409-Thumbnail Image.png
Description
Recently there has been an increase in the number of people calling for the incorporation of relevant mathematics in the mathematics classroom. Unfortunately, various researchers define the term relevant mathematics differently, establishing several ideas of how relevancy can be incorporated into the classroom. The differences between mathematics education researchers' definitions

Recently there has been an increase in the number of people calling for the incorporation of relevant mathematics in the mathematics classroom. Unfortunately, various researchers define the term relevant mathematics differently, establishing several ideas of how relevancy can be incorporated into the classroom. The differences between mathematics education researchers' definitions of relevant and the way they believe relevant math should be implemented in the classroom, leads one to conclude that a similarly varied set of perspectives probably exists between teachers and students as well. The purpose of this exploratory study focuses on how the student and teacher perspectives on relevant mathematics in the classroom converge or diverge. Specifically, do teachers and students see the same lessons, materials, content, and approach as relevant? A survey was conducted with mathematics teachers at a suburban high school and their algebra 1 and geometry students to provide a general idea of their views on relevant mathematics. An analysis of the findings revealed three major differences: the discrepancy between frequency ratings of teachers and students, the differences between how teachers and students defined the term relevance and how the students' highest rated definitions were the least accounted for among the teacher generated questions, and finally the impact of differing attitudes towards mathematics on students' feelings towards its relevance.
ContributorsRedman, Alexandra P (Author) / Middleton, James (Thesis advisor) / Sloane, Finbarr (Committee member) / Blumenfeld-Jones, Donald (Committee member) / Arizona State University (Publisher)
Created2012
134375-Thumbnail Image.png
Description
To determine the effects of exhaust heat recovery systems on small engines, an experiment was performed to measure the power losses of an engine with restricted exhaust flow. In cooperation with ASU's SAE Formula race team, a water brake dynamometer was refurbished and connected to the 2017 racecar engine. The

To determine the effects of exhaust heat recovery systems on small engines, an experiment was performed to measure the power losses of an engine with restricted exhaust flow. In cooperation with ASU's SAE Formula race team, a water brake dynamometer was refurbished and connected to the 2017 racecar engine. The engine was mounted with a diffuser disc exhaust to restrict flow, and a pressure sensor was installed in the O2 port to measure pressure under different restrictions. During testing, problems with the equipment prevented suitable from being generated. Using failure root cause analysis, the failure modes were identified and plans were made to resolve those issues. While no useful data was generated, the project successfully rebuilt a dynamometer for students to use for future engine research.
ContributorsRoss, Zachary David (Author) / Middleton, James (Thesis director) / Steele, Bruce (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component design, a scale model roller coaster was designed. The physics of the roller coaster and its structures were analyzed and a scale model was produced. Afterward, an accelerometer was used to collect G force data as the cart moved along the track. However, the collected data differed from the expected results, as the launch speed was higher than predicted due to more friction than anticipated. As a result, further optimization of the design and models used to design the scale model roller coasters is necessary.

ContributorsCardinale, Matthew (Author) / Johnson, Kayla (Co-author) / Murthy, Raghavendra (Thesis director) / Singh, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

ContributorsGarcia, Andres (Author) / Parekh, Mohan (Co-author) / Middleton, James (Thesis director) / Murthy, Raghavendra (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

ContributorsParekh, Mohan (Author) / Garcia, Andres (Co-author) / Middleton, James (Thesis director) / Murthy, Raghavendra (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
156927-Thumbnail Image.png
Description
This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the high level of uncertainty and variability in wing non-structural mass

This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the high level of uncertainty and variability in wing non-structural mass such as fuel loading and control surfaces. To accomplish this, an improvement is made to existing design tools utilizing rule based automated design to generate wing torque box geometry from a specific wing outer mold-line. Simple analysis on deflection and inferred stiffness shows how early conceptual design choices can strongly impact the stiffness of the structure. The impacts of design choices and how the buckling constraints drive structural weight in particular examples are discussed. The model is then carried further to include a finite element model (FEM) to analyze resulting mode shapes and frequencies for use in aeroelastic analysis. The natural frequencies of several selected wing torque boxes across a range of loading cases are compared.
ContributorsMiskin, Daniel L (Author) / Takahashi, Timothy T (Thesis advisor) / Mignolet, Marc (Committee member) / Murthy, Raghavendra (Committee member) / Arizona State University (Publisher)
Created2018
Description
This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1)

This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1) validate GasTurb 12 and, 2) predict off-design performance of the Garrett GTCP85-98D located at the Arizona State University Tempe campus. GasTurb 12 is validated as an off-design point tool by using the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published a paper detailing a second off-design point method and it includes the manufacturer's off-design point data for the LM2500+. GasTurb 12 is used to predict off-design point performance of the LM2500+ and compared to the manufacturer's data. The GasTurb 12 predictions show good correlation. Garrett has published specification data for the GTCP85-98D. This specification data is analyzed to determine the design point and to comment on off-design trends. Arizona State University GTCP85-98D off-design experimental data is evaluated. Trends presented in the data are commented on and explained. The trends match the expected behavior demonstrated in the specification data for the same gas turbine system. It was originally intended that a model of the GTCP85-98D be constructed in GasTurb 12 and used to predict off-design performance. The prediction would be compared to collected experimental data. This is not possible because the free version of GasTurb 12 used in this research does not have a module to model a single spool turboshaft. This module needs to be purchased for this analysis.
ContributorsMartinjako, Jeremy (Author) / Trimble, Steve (Thesis advisor) / Dahm, Werner (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2014