Matching Items (19)
Filtering by

Clear all filters

135837-Thumbnail Image.png
Description
Studies have shown that arts programs have a positive impact on students' abilities to achieve academic success, showcase creativity, and stay focused inside and outside of the classroom. However, as school funding drops, arts programs are often the first to be cut from school curricula. Rather than drop art completely,

Studies have shown that arts programs have a positive impact on students' abilities to achieve academic success, showcase creativity, and stay focused inside and outside of the classroom. However, as school funding drops, arts programs are often the first to be cut from school curricula. Rather than drop art completely, general education teachers have the opportunity to integrate arts instruction with other content areas in their classrooms. Traditional fraction lessons and Music-infused fraction lessons were administered to two classes of fourth-grade students. The two types of lessons were presented over two separate days in each classroom. Mathematics worksheets and attitudinal surveys were administered to each student in each classroom after each lesson to gauge their understanding of the mathematics content as well as their self-perceived understanding, enjoyment and learning related to the lessons. Students in both classes were found to achieve significantly higher mean scores on the traditional fraction lesson than the music-infused fraction lesson. Lower scores in the music-infused fraction lesson may have been due to the additional component of music for students unfamiliar with music principles. Students tended to express satisfaction for both lessons. In future studies, it would be recommended to spend additional lesson instruction time on the principles of music in order help students reach deeper understanding of the music-infused fraction lesson. Other recommendations include using colorful visuals and interactive activities to establish both fraction and music concepts.
ContributorsGerrish, Julie Kathryn (Author) / Zambo, Ronald (Thesis director) / Hutchins, Catherine (Committee member) / Division of Teacher Preparation (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135964-Thumbnail Image.png
Description
There are two types of understanding when it comes to learning math: procedural understanding and conceptual understanding. I grew up with a rigorous learning curriculum and learned math through endless drills and practices. I was less motivated to understand the reason behind those procedures. I think both types of understanding

There are two types of understanding when it comes to learning math: procedural understanding and conceptual understanding. I grew up with a rigorous learning curriculum and learned math through endless drills and practices. I was less motivated to understand the reason behind those procedures. I think both types of understanding are equally important in learning mathematics. Procedural fluency is the "ability to apply procedures accurately, efficiently, and flexibly... to build or modify procedures from other procedures" (National Council of Teachers of Mathematics, 2015). Procedural understanding may perceive as merely about the understanding of the arithmetic and memorizing the steps with no understanding but in reality, students need to decide which procedure to use for a given situation; here is where the conceptual understanding comes in handy. Students need the skills to integrate concepts and procedures to develop their own ways to solve a problem, they need to know how to do it and why they do it that way. The purpose of this 5-day unit is teaching with conceptual understanding through hands-on activities and the use of tools to learn geometry. Through these lesson plans, students should be able to develop the conceptual understanding of the angles created by parallel lines and transversal, interior and exterior angles of triangles and polygons, and the use of similar triangles, while developing the procedural understanding. These lesson plans are created to align with the eighth grade Common Core Standards. Students are learning angles through the use of protractor and patty paper, making a conjecture based on their data and experience, and real-life problem solving. The lesson plans used the direct instruction and the 5E inquiry template from the iTeachAZ program. The direct instruction lesson plan includes instructional input, guided practice and individual practice. The 5E inquiry lesson plan has five sections: engage, explore, explain, elaborate and evaluate.
ContributorsLeung, Miranda Wing-Mei (Author) / Kurz, Terri (Thesis director) / Walters, Molina (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
175435-Thumbnail Image.jpg
ContributorsHanlon, Roger (Creator) / Arizona Board of Regents (Publisher) / Marine Biological Laboratory Archives (Publisher)
Description

In this project we focus on COVID-19 in a university setting. Arizona State University has a very large population on the Tempe Campus. With the emergence of diseases such as COVID-19, it is very important to track how such a disease spreads within that type of community. This is vital

In this project we focus on COVID-19 in a university setting. Arizona State University has a very large population on the Tempe Campus. With the emergence of diseases such as COVID-19, it is very important to track how such a disease spreads within that type of community. This is vital for containment measures and the safety of everyone involved. We found in the literature several epidemiology models that utilize differential equations for tracking a spread of a disease. However, our goal is to provide a granular look at how disease may spread through contact in a classroom. This thesis models a single ASU classroom and tracks the spread of a disease. It is important to note that our variables and declarations are not aligned with COVID-19 or any other specific disease but are chosen to exemplify the impact of some key parameters on the epidemic size. We found that a smaller transmissibility alongside a more spread-out classroom of agents resulted in fewer infections overall. There are many extensions to this model that are needed in order to take what we have demonstrated and align those ideas with COVID-19 and it’s spread at ASU. However, this model successfully demonstrates a spread of disease through single-classroom interaction, which is the key component for any university campus disease transmission model.

ContributorsJoseph, Mariam (Author) / Bartko, Ezri (Co-author) / Sabuwala, Sana (Co-author) / Milner, Fabio (Thesis director) / O'Keefe, Kelly (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Division of Teacher Preparation (Contributor)
Created2022-12