Matching Items (3)
Filtering by

Clear all filters

151913-Thumbnail Image.png
Description
In this mixed-methods study, I examined the relationship between professional development based on the Common Core State Standards for Mathematics and teacher knowledge, classroom practice, and student learning. Participants were randomly assigned to experimental and control groups. The 50-hour professional development treatment was administered to the treatment group during one

In this mixed-methods study, I examined the relationship between professional development based on the Common Core State Standards for Mathematics and teacher knowledge, classroom practice, and student learning. Participants were randomly assigned to experimental and control groups. The 50-hour professional development treatment was administered to the treatment group during one semester, and then a follow-up replication treatment was administered to the control group during the subsequent semester. Results revealed significant differences in teacher knowledge as a result of the treatment using two instruments. The Learning Mathematics for Teaching scales were used to detect changes in mathematical knowledge for teaching, and an online sorting task was used to detect changes in teachers' knowledge of their standards. Results also indicated differences in classroom practice between pairs of matched teachers selected to participate in classroom observations and interviews. No statistical difference was detected between the groups' student assessment scores using the district's benchmark assessment system. This efficacy study contributes to the literature in two ways. First, it provides an evidence base for a professional development model designed to promote effective implementation of the Common Core State Standards for Mathematics. Second, it addresses ways to impact and measure teachers' knowledge of curriculum in addition to their mathematical content knowledge. The treatment was designed to focus on knowledge of curriculum, but it also successfully impacted teachers' specialized content knowledge, knowledge of content and students, and knowledge of content and teaching.
ContributorsRimbey, Kimberly A (Author) / Middleton, James A. (Thesis advisor) / Sloane, Finbarr (Committee member) / Atkinson, Robert K (Committee member) / Arizona State University (Publisher)
Created2013
151942-Thumbnail Image.png
Description
Researchers have postulated that math academic achievement increases student success in college (Lee, 2012; Silverman & Seidman, 2011; Vigdor, 2013), yet 80% of universities and 98% of community colleges require many of their first-year students to be placed in remedial courses (Bettinger & Long, 2009). Many high school graduates are

Researchers have postulated that math academic achievement increases student success in college (Lee, 2012; Silverman & Seidman, 2011; Vigdor, 2013), yet 80% of universities and 98% of community colleges require many of their first-year students to be placed in remedial courses (Bettinger & Long, 2009). Many high school graduates are entering college ill prepared for the rigors of higher education, lacking understanding of basic and important principles (ACT, 2012). The desire to increase academic achievement is a wide held aspiration in education and the idea of adapting instruction to individuals is one approach to accomplish this goal (Lalley & Gentile, 2009a). Frequently, adaptive learning environments rely on a mastery learning approach, it is thought that when students are afforded the opportunity to master the material, deeper and more meaningful learning is likely to occur. Researchers generally agree that the learning environment, the teaching approach, and the students' attributes are all important to understanding the conditions that promote academic achievement (Bandura, 1977; Bloom, 1968; Guskey, 2010; Cassen, Feinstein & Graham, 2008; Changeiywo, Wambugu & Wachanga, 2011; Lee, 2012; Schunk, 1991; Van Dinther, Dochy & Segers, 2011). The present study investigated the role of college students' affective attributes and skills, such as academic competence and academic resilience, in an adaptive mastery-based learning environment on their academic performance, while enrolled in a remedial mathematics course. The results showed that the combined influence of students' affective attributes and academic resilience had a statistically significant effect on students' academic performance. Further, the mastery-based learning environment also had a significant effect on their academic competence and academic performance.
ContributorsFoshee, Cecile Mary (Author) / Atkinson, Robert K (Thesis advisor) / Elliott, Stephen N. (Committee member) / Horan, John (Committee member) / Arizona State University (Publisher)
Created2013
158322-Thumbnail Image.png
Description
Currently, recommender systems are used extensively to find the right audience with the "right" content over various platforms. Recommendations generated by these systems aim to offer relevant items to users. Different approaches have been suggested to solve this problem mainly by using the rating history of the user or by

Currently, recommender systems are used extensively to find the right audience with the "right" content over various platforms. Recommendations generated by these systems aim to offer relevant items to users. Different approaches have been suggested to solve this problem mainly by using the rating history of the user or by identifying the preferences of similar users. Most of the existing recommendation systems are formulated in an identical fashion, where a model is trained to capture the underlying preferences of users over different kinds of items. Once it is deployed, the model suggests personalized recommendations precisely, and it is assumed that the preferences of users are perfectly reflected by the historical data. However, such user data might be limited in practice, and the characteristics of users may constantly evolve during their intensive interaction between recommendation systems.

Moreover, most of these recommender systems suffer from the cold-start problems where insufficient data for new users or products results in reduced overall recommendation output. In the current study, we have built a recommender system to recommend movies to users. Biclustering algorithm is used to cluster the users and movies simultaneously at the beginning to generate explainable recommendations, and these biclusters are used to form a gridworld where Q-Learning is used to learn the policy to traverse through the grid. The reward function uses the Jaccard Index, which is a measure of common users between two biclusters. Demographic details of new users are used to generate recommendations that solve the cold-start problem too.

Lastly, the implemented algorithm is examined with a real-world dataset against the widely used recommendation algorithm and the performance for the cold-start cases.
ContributorsSargar, Rushikesh Bapu (Author) / Atkinson, Robert K (Thesis advisor) / Chen, Yinong (Thesis advisor) / Chavez-Echeagaray, Maria Elena (Committee member) / Arizona State University (Publisher)
Created2020