Matching Items (21)
Filtering by

Clear all filters

151227-Thumbnail Image.png
Description
Volatile Organic Compounds (VOCs) are central to atmospheric chemistry and have significant impacts on the environment. The reaction of oxygenated VOCs with OH radicals was first studied to understand the fate of oxygenated VOCs. The rate constants of the gas-phase reaction of OH radicals with trans-2-hexenal, trans-2-octenal, and trans-2 nonenal

Volatile Organic Compounds (VOCs) are central to atmospheric chemistry and have significant impacts on the environment. The reaction of oxygenated VOCs with OH radicals was first studied to understand the fate of oxygenated VOCs. The rate constants of the gas-phase reaction of OH radicals with trans-2-hexenal, trans-2-octenal, and trans-2 nonenal were determined using the relative rate technique. Then the interactions between VOCs and ionic liquid surfaces were studied. The goal was to find a material to selectively detect alcohol compounds. Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of VOCs. The thermodynamic data suggest that 1-butyl-3-methylimindazolium chloride (C4mimCl) preferentially interacts with alcohols as compared to other classes of VOCs. Fourier transform infrared spectroscopy was used to probe the ionic liquid surface before and after exposure to the VOCs that were tested. New spectral features were detected after exposure of C4mimCl to various alcohols and a VOC mixture with an alcohol in it. The new features are characteristic of the alcohols tested. No new IR features were detected after exposure of the C4mimCl to the aldehyde, ketone, alkane, alkene, alkyne or aromatic compounds. The experimental results demonstrated that C4mimCl is selective to alcohols, even in complex mixtures. The kinetic study of the association and dissociation of alcohols with C4minCl surfaces was performed. The findings in this work provide information for future gas-phase alcohol sensor design. CO2 is a major contributor to global warming. An ionic liquid functionalized reduced graphite oxide (IL-RGO)/ TiO2 nanocomposite was synthesized and used to reduce CO2 to a hydrocarbon in the presence of H2O vapor. The SEM image revealed that IL-RGO/TiO2 contained separated reduced graphite oxide flakes with TiO2 nanoparticles. Diffuse Reflectance Infrared Fourier Transform Spectroscopy was used to study the conversion of CO2 and H2O vapor over the IL-RGO/TiO2 catalyst. Under UV-Vis irradiation, CH4 was found to form after just 40 seconds of irradiation. The concentration of CH4 continuously increased under longer irradiation time. This research is particularly important since it seems to suggest the direct, selective formation of CH4 as opposed to CO.
ContributorsGao, Tingting (Author) / Andino, Jean M (Thesis advisor) / Forzani, Erica (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2012
137722-Thumbnail Image.png
Description
Arson and intentional fires account for significant property losses and over 400 civilian deaths yearly in the United States. However, clearance rates for arson offenses remain low relative to other crimes. This issue can be attributed in part to the challenges associated with performing an arson investigation, in particular the

Arson and intentional fires account for significant property losses and over 400 civilian deaths yearly in the United States. However, clearance rates for arson offenses remain low relative to other crimes. This issue can be attributed in part to the challenges associated with performing an arson investigation, in particular the collection and interpretation of reliable data. PLOT-cryoadsorption, a dynamic headspace sampling technique developed at the National Institute of Standards and Technology, was proposed as an alternate technique for extracting ignitable liquid residues for analysis. The method was generally shown to be robust, flexible, precise, and accurate for a variety of applications. The possibility of using a real-time in situ monitor for screening samples was also discussed. This work, conducted by an undergraduate researcher, has implications in educational curricula as well as in the field of forensic science.
ContributorsNichols, Jessica Ellen (Author) / Forzani, Erica (Thesis director) / Nielsen, David (Committee member) / Tsow, Francis (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
157716-Thumbnail Image.png
Description
Membrane based technology is one of the principal methods currently in widespread use to address the global water shortage. Pervaporation desalination is a membrane technology for water purification currently under investigation as a method for processing reverse osmosis concentrates or for stand-alone applications. Concentration polarization is a potential problem in

Membrane based technology is one of the principal methods currently in widespread use to address the global water shortage. Pervaporation desalination is a membrane technology for water purification currently under investigation as a method for processing reverse osmosis concentrates or for stand-alone applications. Concentration polarization is a potential problem in any membrane separation. In desalination concentration polarization can lead to reduced water flux, increased propensity for membrane scaling, and decreased quality of the product water. Quantifying concentration polarization is important because reducing concentration polarization requires increased capital and operating costs in the form of feed spacers and high feed flow velocities. The prevalent methods for quantifying concentration polarization are based on the steady state thin film boundary layer theory. Baker’s method, previously used for pervaporation volatile organic compound separations but not desalination, was successfully applied to data from five previously published pervaporation desalination studies. Further investigation suggests that Baker’s method may not have wide applicability in desalination. Instead, the limitations of the steady state assumption were exposed. Additionally, preliminary results of nanophotonic enhancement of pervaporation membranes were found to produce significant flux enhancement. A novel theory on the mitigation of concentration polarization by the photothermal effect was discussed.
ContributorsMann, Stewart, Ph.D (Author) / Lind, Mary Laura (Thesis advisor) / Walker, Shane (Committee member) / Green, Matthew (Committee member) / Forzani, Erica (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2019
171712-Thumbnail Image.png
Description
Cardiovascular disease is affecting millions of people worldwide and is the leading cause of death in the United States. This disease is closely related to the abnormal creatinine levels in blood. For this reason, there is a need for a low-cost point-of-care device that could measure the creatinine level in

Cardiovascular disease is affecting millions of people worldwide and is the leading cause of death in the United States. This disease is closely related to the abnormal creatinine levels in blood. For this reason, there is a need for a low-cost point-of-care device that could measure the creatinine level in blood with the goal of managing and preventing cardiovascular disease. This project introduces a Molecular Reactive Lateral Flow Assay (MoReLFA) device that is aimed toward creatinine detection based on an optimized chemical reaction of creatinine and alkaline picrate. The device consists of different membranes that accommodate 50 microliters of fluid sample and carry out a colorimetric reaction, in which deposited-colored region is analyzed for Red, Green, and Blue (RGB) components via an image processing software. The color intensity from the RGB outputs was then studied and compared with a gold standard spectrophotometry-based technique. The results show that the MoReLFA sensor could successfully detect creatinine levels in standard solutions. The plot of the sensor color intensity against the absorbance from spectrophotometry shows a good correlation between the two methods (R2 = 0.96). Furthermore, the paper introduces the development of a RGB reader box that is portable and for easy assessment of RGB values. The color intensity from the box shows an increasing trend with increasing creatinine concentrations; and the coefficient of determination of this relationship is 0.85.
ContributorsNguyen, Ngan Anh (Author) / Raupp, Gregory (Thesis advisor) / Forzani, Erica (Thesis advisor) / Mora, Sabrina Jimena (Committee member) / Arizona State University (Publisher)
Created2022
165856-Thumbnail Image.png
Description

Realtime understanding of one’s complete metabolic state is crucial to controlling weight and managing chronic illnesses, such as diabetes. This project represents the development of a novel breath acetone sensor within the Biodesign Institute’s Center for Bioelectronics and Biosensors. The purpose is to determine if a sensor can be manufactured

Realtime understanding of one’s complete metabolic state is crucial to controlling weight and managing chronic illnesses, such as diabetes. This project represents the development of a novel breath acetone sensor within the Biodesign Institute’s Center for Bioelectronics and Biosensors. The purpose is to determine if a sensor can be manufactured with the capacity to measure breath acetone concentrations typical of various levels of metabolic activity. For this purpose, a solution that selectively interacts with acetone was embedded in a sensor cartridge that is permeable to volatile organic compounds. After 30 minutes of exposure to a range of acetone concentrations, a color change response was observed in the sensors. Requiring only exposure to a breath, these novel sensor configurations may offer non-trivial improvements to clinical and at-home measurement of lipid metabolic rate.

ContributorsDenham, Landon (Author) / Forzani, Erica (Thesis director) / Mora, Sabrina Jimena (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05
187617-Thumbnail Image.png
Description
Freshwater as the resource for the survival of humans and all lives on earth is very precious but scarce. The shortage of the original freshwater resources and the interfering activities by human and other natural factors form this issue together. To reduce the water supply pressure and deterioration of freshwater

Freshwater as the resource for the survival of humans and all lives on earth is very precious but scarce. The shortage of the original freshwater resources and the interfering activities by human and other natural factors form this issue together. To reduce the water supply pressure and deterioration of freshwater systems (for example, river, wetland, and groundwater), the quantity-increase and the quality-increase strategies should be implemented at the same time. Therefore, corresponding membrane technologies have been developed to achieve water purification with high efficiency and low cost. For desalinating seawater and other types of saline water, pervaporation has been proved that has the potential to complete desalination with salt rejection rate over 99 % when dealing with high salinity water that reverse osmosis (RO) cannot handle. In this dissertation, except the discussion of commonly used materials to synthesize pervaporation membranes, two types of novel pervaporation desalination membranes (nanophotonic-enhanced membrane and free-standing sulfonated membrane) have been presented and discussed. The novel membranes were tested to see the potential of pervaporation to desalinate seawater and saline water with more complex ionic composition, and the possibility of achieving zero liquid discharge in the desalination field when having pervaporation as the assistance. For mitigating polluted water that is caused by human activities, especially agricultural activities, electrodialysis is an effective method to remove specific ions from water, and it does not require extra chemical cost or regeneration. A type of anion exchange membranes inspired by ion exchange resins was synthesized and tested, and the performance on nitrate removal has been evaluated in this dissertation.
ContributorsLi, Yusi (Author) / Lind, Mary Laura (Thesis advisor) / Perreault, Francois (Thesis advisor) / Forzani, Erica (Committee member) / Seo, S. Eileen (Committee member) / Walker, W. Shane (Committee member) / Arizona State University (Publisher)
Created2023
187367-Thumbnail Image.png
Description
Non-invasive biosensors enable rapid, real-time measurement and quantification of biological processes, such as metabolic state. Currently, the most accurate metabolic sensors are invasive, and significant cost is required, with few exceptions, to achieve similar accuracy using non-invasive methods. This research, conducted within the Biodesign Institute Center for Bioelectronics and Biosensors,

Non-invasive biosensors enable rapid, real-time measurement and quantification of biological processes, such as metabolic state. Currently, the most accurate metabolic sensors are invasive, and significant cost is required, with few exceptions, to achieve similar accuracy using non-invasive methods. This research, conducted within the Biodesign Institute Center for Bioelectronics and Biosensors, leverages the selective reactivity of a chemical sensing solution to develop a sensor which measures acetone in the breath for ketosis and ketoacidosis diagnostics, which is relevant to body weight management and type I diabetes. The sensor displays a gradient of color changes, and the absorbance change is proportional to the acetone concentration in the part- per-million range, making applicable for detection ketosis and ketoacidosis in human breath samples. The colorimetric sensor response can be fitted to a Langmuir-like model for sensor calibration. The sensors best performance comes with turbulent, continuous exposure to the samples, rather than batch sample exposure. With that configuration, these novel sensors offer significant improvements to clinical and at- home measurement of ketosis and ketoacidosis.
ContributorsDenham, Landon (Author) / Forzani, Erica (Thesis advisor) / Wang, Shaopeng (Committee member) / Kulick, Doina (Committee member) / Arizona State University (Publisher)
Created2023
156838-Thumbnail Image.png
Description
Connected health is an emerging field of science and medicine that enables the collection and integration of personal biometrics and environment, contributing to more precise and accurate assessment of the person’s state. It has been proven to help to establish wellbeing as well as prevent, diagnose, and determine the prognosis

Connected health is an emerging field of science and medicine that enables the collection and integration of personal biometrics and environment, contributing to more precise and accurate assessment of the person’s state. It has been proven to help to establish wellbeing as well as prevent, diagnose, and determine the prognosis of chronic diseases. The development of sensing devices for connected health is challenging because devices used in the field of medicine need to meet not only selectivity and sensitivity of detection, but also robustness and performance under hash usage conditions, typically by non-experts in analysis. In this work, the properties and fabrication process of sensors built for sensing devices capable of detection of a biomarker as well as pollutant levels in the environment are discussed. These sensing devices have been developed and perfected with the aim of overcoming the aforementioned challenges and contributing to the evolving connected health field. In the first part of this work, a wireless, solid-state, portable, and continuous ammonia (NH3) gas sensing device is introduced. This device determines the concentration of NH3 contained in a biological sample within five seconds and can wirelessly transmit data to other Bluetooth enabled devices. In this second part of the work, the use of a thermal-based flow meter to assess exhalation rate is evaluated. For this purpose, a mobile device named here mobile indirect calorimeter (MIC) was designed and used to measure resting metabolic rate (RMR) from subjects, which relies on the measure of O2 consumption rate (VO2) and CO2 generation rate (VCO2), and compared to a practical reference method in hospital. In the third part of the work, the sensing selectivity, stability and sensitivity of an aged molecularly imprinted polymer (MIP) selective to the adsorption of hydrocarbons were studied. The optimized material was integrated in tuning fork sensors to detect environmental hydrocarbons, and demonstrated the needed stability for field testing. Finally, the hydrocarbon sensing device was used in conjunction with a MIC to explore potential connections between hydrocarbon exposure level and resting metabolic rate of individuals. Both the hydrocarbon sensing device and the metabolic rate device were under field testing. The correlation between the hydrocarbons and the resting metabolic rate were investigated.
ContributorsLiu, Naiyuan (Author) / Forzani, Erica (Thesis advisor) / Raupp, Gregory (Committee member) / Holloway, Julianne (Committee member) / Thomas, Marylaura (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2018
156977-Thumbnail Image.png
Description
Excessive weight gain during pregnancy is a significant public health concern and has been the recent focus of novel, control systems-based interventions. Healthy Mom Zone (HMZ) is an intervention study that aims to develop and validate an individually tailored and intensively adaptive intervention to manage weight gain for overweight or

Excessive weight gain during pregnancy is a significant public health concern and has been the recent focus of novel, control systems-based interventions. Healthy Mom Zone (HMZ) is an intervention study that aims to develop and validate an individually tailored and intensively adaptive intervention to manage weight gain for overweight or obese pregnant women using control engineering approaches. Motivated by the needs of the HMZ, this dissertation presents how to use system identification and state estimation techniques to assist in dynamical systems modeling and further enhance the performance of the closed-loop control system for interventions.

Underreporting of energy intake (EI) has been found to be an important consideration that interferes with accurate weight control assessment and the effective use of energy balance (EB) models in an intervention setting. To better understand underreporting, a variety of estimation approaches are developed; these include back-calculating energy intake from a closed-form of the EB model, a Kalman-filter based algorithm for recursive estimation from randomly intermittent measurements in real time, and two semi-physical identification approaches that can parameterize the extent of systematic underreporting with global/local modeling techniques. Each approach is analyzed with intervention participant data and demonstrates potential of promoting the success of weight control.

In addition, substantial efforts have been devoted to develop participant-validated models and incorporate into the Hybrid Model Predictive Control (HMPC) framework for closed-loop interventions. System identification analyses from Phase I led to modifications of the measurement protocols for Phase II, from which longer and more informative data sets were collected. Participant-validated models obtained from Phase II data significantly increase predictive ability for individual behaviors and provide reliable open-loop dynamic information for HMPC implementation. The HMPC algorithm that assigns optimized dosages in response to participant real time intervention outcomes relies on a Mixed Logical Dynamical framework which can address the categorical nature of dosage components, and translates sequential decision rules and other clinical considerations into mixed-integer linear constraints. The performance of the HMPC decision algorithm was tested with participant-validated models, with the results indicating that HMPC is superior to "IF-THEN" decision rules.
ContributorsGuo, Penghong (Author) / Rivera, Daniel E. (Thesis advisor) / Peet, Matthew M. (Committee member) / Forzani, Erica (Committee member) / Deng, Shuguang (Committee member) / Pavlic, Theodore P. (Committee member) / Arizona State University (Publisher)
Created2018
157157-Thumbnail Image.png
Description
Among the alternative processes for the traditional distillation, adsorption and membrane separations are the two most promising candidates and metal-organic frameworks (MOFs) are the new material candidate as adsorbent or membrane due to their high surface area, various pore sizes, and highly tunable framework functionality. This dissertation presents an investigation

Among the alternative processes for the traditional distillation, adsorption and membrane separations are the two most promising candidates and metal-organic frameworks (MOFs) are the new material candidate as adsorbent or membrane due to their high surface area, various pore sizes, and highly tunable framework functionality. This dissertation presents an investigation of the formation process of MOF membrane, framework defects, and two-dimensional (2D) MOFs, aiming to explore the answers for three critical questions: (1) how to obtain a continuous MOF membrane, (2) how defects form in MOF framework, and (3) how to obtain isolated 2D MOFs. To solve the first problem, the accumulated protons in the MOF synthesis solution is proposed to be the key factor preventing the continuous growth among Universitetet I Oslo-(UiO)-66 crystals. The hypothesis is verified by the growth reactivation under the addition of deprotonating agent. As long as the protons were sufficiently coordinated by the deprotonating agent, the continuous growth of UiO-66 is guaranteed. Moreover, the modulation effect can impact the coordination equilibrium so that an oriented growth of UiO-66 film was achieved in membrane structures. To find the answer for the second problem, the defect formation mechanism in UiO-66 was investigated and the formation of missing-cluster (MC) defects is attributed to the partially-deprotonated ligands. Experimental results show the number of MC defects is sensitive to the addition of deprotonating agent, synthesis temperature, and reactant concentration. Pore size distribution allows an accurate and convenient characterization of the defects. Results show that these defects can cause significant deviations of its pore size distribution from the perfect crystal. The study of the third questions is based on the established bi-phase synthesis method, a facile synthesis method is adopted for the production of high quality 2D MOFs in large scale. Here, pyridine is used as capping reagent to prevent the interplanar hydrogen bond formation. Meanwhile, formic acid and triethylamine as modulator and deprotonating agent to balance the anisotropic growth, crystallinity, and yield in the 2D MOF synthesis. As a result, high quality 2D zinc-terephthalic acid (ZnBDC) and copper-terephthalic acid (CuBDC) with extraordinary aspect ratio samples were successfully synthesized.
ContributorsShan, Bohan (Author) / Mu, Bin (Thesis advisor) / Forzani, Erica (Committee member) / Dai, Lenore (Committee member) / Lin, Jerry (Committee member) / Liu, Jingyue (Committee member) / Arizona State University (Publisher)
Created2019