Matching Items (50)
Filtering by

Clear all filters

151194-Thumbnail Image.png
Description
The diversity of industrially important chemicals that can be produced biocatalytically from renewable resources continues to expand with the aid of metabolic and pathway engineering. In addition to biofuels, these chemicals also include a number of monomers with utility in conventional and novel plastic materials production. Monomers used for polyamide

The diversity of industrially important chemicals that can be produced biocatalytically from renewable resources continues to expand with the aid of metabolic and pathway engineering. In addition to biofuels, these chemicals also include a number of monomers with utility in conventional and novel plastic materials production. Monomers used for polyamide production are no exception, as evidenced by the recent engineering of microbial biocatalysts to produce cadaverine, putrescine, and succinate. In this thesis the repertoire and depth of these renewable polyamide precursors is expanded upon through the engineering of a novel pathway that enables Escherichia coli to produce, as individual products, both δ-aminovaleric acid (AMV) and glutaric acid when grown in glucose mineral salt medium. δ-Aminovaleric acid is the monomeric subunit of nylon-5 homopolymer, whereas glutaric acid is a dicarboxylic acid used to produce copolymers such as nylon-5,5. These feats were achieved by increasing endogenous production of the required pathway precursor, L-lysine. E. coli was engineered for L-lysine over-production through the introduction and expression of metabolically deregulated pathway genes, namely aspartate kinase III and dihydrodipicolinate synthase, encoded by the feedback resistant mutants lysCfbr and dapAfbr, respectively. After deleting a natural L-lysine decarboxylase, up to 1.6 g/L L-lysine could be produced from glucose in shake flasks as a result. The natural L-lysine degradation pathway of numerous Pseudomonas sp., which passes from L-lysine through both δ-aminovaleric acid and glutaric acid, was then functionally reconstructed in a piecewise manner in the E. coli L-lysine over-producer. Expression of davBA alone resulted in the production of over 0.86 g/L AMV in 48 h. Expression of davBADT resulted in the production of over 0.82 g/L glutaric acid under the same conditions. These production titers were achieved with yields of 69.5 and 68.4 mmol/mol of AMV and glutarate, respectively. Future improvements to the ability to synthesize both products will likely come from the ability to eliminate cadaverine by-product formation through the deletion of cadA and ldcC, genes involved in E. coli's native lysine degradation pathway. Nevertheless, through metabolic and pathway engineering, it is now possible produce the polyamide monomers of δ-aminovaleric acid and glutaric acid from renewable resources.
ContributorsAdkins, Jake M (Author) / Nielsen, David R. (Thesis advisor) / Caplan, Michael (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2012
156032-Thumbnail Image.png
Description
Proton beam therapy (PBT) is a state-of-the-art radiotherapy treatment approach that uses focused proton beams for tumor ablation. A key advantage of this approach over conventional photon radiotherapy (XRT) is the unique dose deposition characteristics of protons, resulting in superior healthy tissue sparing. This results in fewer unwanted side effects

Proton beam therapy (PBT) is a state-of-the-art radiotherapy treatment approach that uses focused proton beams for tumor ablation. A key advantage of this approach over conventional photon radiotherapy (XRT) is the unique dose deposition characteristics of protons, resulting in superior healthy tissue sparing. This results in fewer unwanted side effects and improved outcomes for patients. Current available dosimeters are intrinsic, complex and expensive; hence cannot be used to determine the dose delivered to the tumor routinely. Here, we report a hydrogel based plasmonic nanosensor for measurements of clinical doses in ranges between 2-4 GyRBE. In this nanosensor, gold ions, encapsulated in a hydrogel, are reduced to gold nanoparticles following irradiation with proton beams. Formation of gold nanoparticles renders a color change to the originally colorless hydrogel. The intensity of the color can be used to calibrate the hydrogel nanosensor in order to quantify different radiation doses employed during treatment. The potential of this nanosensor for clinical translation was demonstrated using an anthropomorphic phantom mimicking a clinical radiotherapy session. The simplicity of fabrication, detection range in the fractionated radiotherapy regime and ease of detection with translational potential makes this a first-in-kind plasmonic colorimetric nanosensor for applications in clinical proton beam therapy.
ContributorsInamdar, Sahil (Author) / Rege, Kaushal (Thesis advisor) / Anand, Aman (Committee member) / Nannenga, Brent (Committee member) / Arizona State University (Publisher)
Created2017
156129-Thumbnail Image.png
Description
An urgent need for developing new chemical separations that address the capture of dilute impurities from fluid streams are needed. These separations include the capture of carbon dioxide from the atmosphere, impurities from drinking water, and toxins from blood streams. A challenge is presented when capturing these impurities because the

An urgent need for developing new chemical separations that address the capture of dilute impurities from fluid streams are needed. These separations include the capture of carbon dioxide from the atmosphere, impurities from drinking water, and toxins from blood streams. A challenge is presented when capturing these impurities because the energy cost for processing the bulk fluid stream to capture trace contaminants is too great using traditional thermal separations. The development of sorbents that may capture these contaminants passively has been emphasized in academic research for some time, producing many designer materials including metal-organic frameworks (MOFs) and polymeric resins. Scaffolds must be developed to effectively anchor these materials in a passing fluid stream. In this work, two design techniques are presented for anchoring these sorbents in electrospun fiber scaffolds.

The first technique involves imbedding sorbent particles inside the fibers: forming particle-embedded fibers. It is demonstrated that particles will spontaneously coat themselves in the fibers at dilute loadings, but at higher loadings some get trapped on the fiber surface. A mathematical model is used to show that when these particles are embedded, the polymeric coating provided by the fibers may be designed to increase the kinetic selectivity and/or stability of the embedded sorbents. Two proof-of-concept studies are performed to validate this model including the increased selectivity of carbon dioxide over nitrogen when the MOF ZIF-8 is embedded in a poly(ethylene oxide) and Matrimid polymer blend; and that increased hydrothermal stability is realized when the water-sensitive MOF HKUST-1 is embedded in polystyrene fibers relative to pure HKUST-1 powder.

The second technique involves the creation of a pore network throughout the fiber to increase accessibility of embedded sorbent particles. It is demonstrated that the removal of a blended highly soluble polymer additive from the spun particle-containing fibers leaves a pore network behind without removing the embedded sorbent. The increased accessibility of embedded sorbents is validated by embedding a known direct air capture sorbent in porous electrospun fibers, and demonstrating that they have the fastest kinetic uptake of any direct air capture sorbent reported in literature to date, along with over 90% sorbent accessibility.
ContributorsArmstrong, Mitchell (Author) / Mu, Bin (Thesis advisor) / Green, Matthew (Committee member) / Seo, Dong (Committee member) / Lackner, Klaus (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2018
157367-Thumbnail Image.png
Description
Granulation is a process within particle technology where a liquid binding agent is added to a powder bed to create larger granules to modify bulk properties for easier processing. Three sets of experiments were conducted to screen for which factors had the greatest effect on granule formation, size distribution,

Granulation is a process within particle technology where a liquid binding agent is added to a powder bed to create larger granules to modify bulk properties for easier processing. Three sets of experiments were conducted to screen for which factors had the greatest effect on granule formation, size distribution, and morphological properties when wet granulating microcrystalline cellulose and water. Previous experiments had identified the different growth regimes within wet granulation, as well as the granule formation mechanisms in single-drop granulation experiments, but little research has been conducted to determine how results extracted from single drop experiments could be used to better understand the first principles that drive high shear granulation. The experiment found that under a liquid solid ratio of 110%, the granule growth rate was linear as opposed to the induction growth regime experienced at higher liquid solid ratios. L/S ratios less than 100% led to a bimodal distribution comprised of large distributions of ungranulated powder and large irregular granules. Insufficient water hampered the growth of granules due to lack of enough water bridges to connect the granules and powder, while the large molecules continued to agglomerate with particles as they rotated around the mixer. The nozzle end was augmented so that drop size as well as drop height could be adjusted and compared to single-drop granulation experiments in proceeding investigations. As individual factors, neither augmentation had significant contributions to granule size, but preliminary screens identified that interaction between increasing L/S ratio and decreasing drop size could lead to narrower distributions of particles as well as greater circularity. Preliminary screening also identified that decreasing the drop height of the nozzle could increase the rate of particle growth during the 110% L/S trials without changing the growth mechanisms, indicating a way to alter the rate of steady-state particle growth. This paper screens for which factors are most pertinent to associating single-drop and wet granulation in order to develop granulation models that can ascertain information from single-drop granulations and predict the shape and size distribution of any wet granulation, without the need to run costly wet granulation experiments.
ContributorsLay, Michael (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2019
156512-Thumbnail Image.png
Description
Alzheimer’s disease is a major problem affecting over 5.7 million Americans. Although much is known about the effects of this neurogenerative disease, the exact pathogenesis is still unknown. One very important characteristic of Alzheimer’s is the accumulation of beta amyloid protein which often results in plaques. To understand these beta

Alzheimer’s disease is a major problem affecting over 5.7 million Americans. Although much is known about the effects of this neurogenerative disease, the exact pathogenesis is still unknown. One very important characteristic of Alzheimer’s is the accumulation of beta amyloid protein which often results in plaques. To understand these beta amyloid proteins better, antibody fragments may be used to bind to these oligomers and potentially reduce the effects of Alzheimer’s disease.

This thesis focused on the expression and crystallization the fragment antigen binding antibody fragment A4. A fragment antigen binding fragment was chosen to be worked with as it is more stable than many other antibody fragments. A4 is important in Alzheimer’s disease as it is able to identify toxic beta amyloid.
ContributorsColasurd, Paige (Author) / Nannenga, Brent (Thesis advisor) / Mills, Jeremy (Committee member) / Varman, Arul (Committee member) / Arizona State University (Publisher)
Created2018
156659-Thumbnail Image.png
Description
In the United States, 12% of women are typically diagnosed with breast cancer, where 20-30% of these cases are identified as Triple Negative Breast Cancer (TNBC). In the state of Arizona, 810 deaths occur due to breast cancer and more than 4,600 cases are diagnosed every year (American Cancer Society). The lack

In the United States, 12% of women are typically diagnosed with breast cancer, where 20-30% of these cases are identified as Triple Negative Breast Cancer (TNBC). In the state of Arizona, 810 deaths occur due to breast cancer and more than 4,600 cases are diagnosed every year (American Cancer Society). The lack of estrogen, progesterone, and HER2 receptors in TNBC makes discovery of targeted therapies further challenging. To tackle this issue, a novel multi-component drug vehicle is presented. Previously, we have shown that mitoxantrone, a DNA damaging drug, can sensitize TNBC cells to TRAIL, which is a protein that can selectively kill cancer cells. In this current study, we have formulated aminoglycoside-derived nanoparticles (liposomes) loaded with mitoxantrone, PARP inhibitors, for delivery to cancer cells. PARP inhibitors are helpful in preventing cancer cells from repairing their DNA following damage with other drugs (e.g. mitoxantrone). Various treatment liposome groups, consisting of lipid-containing polymers (lipopolymers) synthesized in our laboratory, were formulated and characterized for their size, surface charge, and stability. PARP inhibitors and treatment of cells for in-vitro and in-vivo experiments with these liposomes resulted in synergistic death of cancer cells. Finally, studies to evaluate the pre-clinical efficacy of these approaches using immuno-deficient mouse models of TNBC disease have been initiated.
ContributorsMuralikrishnan, Harini (Author) / Rege, Kaushal (Thesis advisor) / Holechek, Susan (Committee member) / Nannenga, Brent (Committee member) / Arizona State University (Publisher)
Created2018
156662-Thumbnail Image.png
Description
Amphipathic molecules consist of hydrophilic and hydrophobic regions, which make them surface-active molecules. The uniqueness of these compounds results in inducing low surface tension and self-assembly of the molecules inside a solvent which have been exploited in personal care, the oil industry and agriculture industry. Amphipathic molecules are also used

Amphipathic molecules consist of hydrophilic and hydrophobic regions, which make them surface-active molecules. The uniqueness of these compounds results in inducing low surface tension and self-assembly of the molecules inside a solvent which have been exploited in personal care, the oil industry and agriculture industry. Amphipathic molecules are also used in the healthcare industry as drug delivery systems and other bio-nanotechnology applications.

In this thesis, a novel series of grafted siloxanes have been explored for their probable application in the healthcare industry. The siloxanes are grafted with poly(ethylene glycol) (PEG) and quaternary ammonium salt (QUAT). The effects of varying 1) molar ratios of QUAT to PEG and 2) PEG chain length on contact angle, surface tension, critical micelle concentration (CMC), and micelle assembly properties were studied. In contact angle experiments, the hydrophilicity of grafted siloxanes increased by grafting PEG and QUAT. The amphiphilicity increases and CMC decreases as the PEG chain length shortens. Adding QUAT also reduces CMC. These trends were observed in surface tension and Isothermal Titration Calorimetry experiments. A change in self-assembly behaviour was also observed in Dynamic Light Scattering experiments upon increasing the PEG chain length and its ratio relative to the quaternary ammonium in the siloxane polymer.

These polymers have also been studied for their probable application as a sensitive 1H NMR spectroscopy indicator of tissue oxygenation (pO2) based on spectroscopic spin-lattice relaxometry. The proton imaging of siloxanes to map tissue oxygenation levels (PISTOL) technique is used to map T1 of siloxane polymer, which is correlated to dynamic changes in tissue pO2 at various locations by a linear relationship between pO2 and 1/T1. The T1-weighted echo spin signals were observed in an initial study of siloxanes using the PISTOL technique.

The change in the ratio of QUAT to PEG and the varying chain length of PEG have a significant effect on the physical property characteristics of siloxane graft copolymers. The conclusions and observations of the present work serve as a benchmark study for further development of adaptive polymers and for the creation of integrated “nanoscale” probes for PISTOL oximetry and drug delivery.
ContributorsGupta, Srishti (Author) / Green, Matthew D (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2018
156838-Thumbnail Image.png
Description
Connected health is an emerging field of science and medicine that enables the collection and integration of personal biometrics and environment, contributing to more precise and accurate assessment of the person’s state. It has been proven to help to establish wellbeing as well as prevent, diagnose, and determine the prognosis

Connected health is an emerging field of science and medicine that enables the collection and integration of personal biometrics and environment, contributing to more precise and accurate assessment of the person’s state. It has been proven to help to establish wellbeing as well as prevent, diagnose, and determine the prognosis of chronic diseases. The development of sensing devices for connected health is challenging because devices used in the field of medicine need to meet not only selectivity and sensitivity of detection, but also robustness and performance under hash usage conditions, typically by non-experts in analysis. In this work, the properties and fabrication process of sensors built for sensing devices capable of detection of a biomarker as well as pollutant levels in the environment are discussed. These sensing devices have been developed and perfected with the aim of overcoming the aforementioned challenges and contributing to the evolving connected health field. In the first part of this work, a wireless, solid-state, portable, and continuous ammonia (NH3) gas sensing device is introduced. This device determines the concentration of NH3 contained in a biological sample within five seconds and can wirelessly transmit data to other Bluetooth enabled devices. In this second part of the work, the use of a thermal-based flow meter to assess exhalation rate is evaluated. For this purpose, a mobile device named here mobile indirect calorimeter (MIC) was designed and used to measure resting metabolic rate (RMR) from subjects, which relies on the measure of O2 consumption rate (VO2) and CO2 generation rate (VCO2), and compared to a practical reference method in hospital. In the third part of the work, the sensing selectivity, stability and sensitivity of an aged molecularly imprinted polymer (MIP) selective to the adsorption of hydrocarbons were studied. The optimized material was integrated in tuning fork sensors to detect environmental hydrocarbons, and demonstrated the needed stability for field testing. Finally, the hydrocarbon sensing device was used in conjunction with a MIC to explore potential connections between hydrocarbon exposure level and resting metabolic rate of individuals. Both the hydrocarbon sensing device and the metabolic rate device were under field testing. The correlation between the hydrocarbons and the resting metabolic rate were investigated.
ContributorsLiu, Naiyuan (Author) / Forzani, Erica (Thesis advisor) / Raupp, Gregory (Committee member) / Holloway, Julianne (Committee member) / Thomas, Marylaura (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2018
157189-Thumbnail Image.png
Description
Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of cement, pharmaceuticals, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and

Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of cement, pharmaceuticals, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and operating parameters, such as fill level and rotation rate. More research on heat transfer in rotary drums will increase operating efficiency, leading to significant energy savings on a global scale.

This research utilizes infrared imaging to investigate the effects of fill level and rotation rate on the particle bed hydrodynamics and the average wall-particle heat transfer coefficient. 3 mm silica beads and a stainless steel rotary drum with a diameter of 6 in and a length of 3 in were used at fill levels of 10 %, 17.5 %, and 25 %, and rotation rates of 2 rpm, 6 rpm, and 10 rpm. Two full factorial designs of experiments were completed to understand the effects of these factors in the presence of conduction only (Case 1) and conduction with forced convection (Case 2). Particle-particle friction caused the particle bed to stagnate at elevated temperatures in Case 1, while the inlet air velocity in Case 2 dominated the particle friction effects to maintain the flow profile. The maximum heat transfer coefficient was achieved at a high rotation rate and low fill level in Case 1, and at a high rotation rate and high fill level in Case 2. Heat losses from the system were dominated by natural convection between the hot air in the drum and the external surroundings.
ContributorsBoepple, Brandon (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2019
135407-Thumbnail Image.png
Description
This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time

This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-ToF) was used to help verify the structure of both peptides, which were purified using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The next steps in the research are to attach the peptides to a micelle and determine their impact on micelle stability.
ContributorsMoe, Anna Marguerite (Author) / Green, Matthew (Thesis director) / Jones, Anne (Committee member) / Sullivan, Millicent (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05