Matching Items (8)
Filtering by

Clear all filters

150697-Thumbnail Image.png
Description
The mechanical behavior of Pb-free solder alloys is important, since they must maintain mechanical integrity under thermomechanical fatigue, creep, and mechanical shock conditions. Mechanical shock, in particular, has become an increasing concern in the electronics industry, since electronic packages can be subjected to mechanical shock by mishandling during manufacture or

The mechanical behavior of Pb-free solder alloys is important, since they must maintain mechanical integrity under thermomechanical fatigue, creep, and mechanical shock conditions. Mechanical shock, in particular, has become an increasing concern in the electronics industry, since electronic packages can be subjected to mechanical shock by mishandling during manufacture or by accidental dropping. In this study, the mechanical shock behavior of Sn and Sn-Ag-Cu alloys was systematically analyzed over the strain rate range 10-3 - 30 s-1 in bulk samples, and over 10-3 - 12 s-1 on the single solder joint level. More importantly, the influences of solder microstructure and intermetallic compounds (IMC) on mechanical shock resistance were quantified. A thorough microstructural characterization of Sn-rich alloys was conducted using synchrotron x-ray computed tomography. The three-dimensional morphology and distribution of contiguous phases and precipitates was analyzed. A multiscale approach was utilized to characterize Sn-rich phases on the microscale with x-ray tomography and focused ion beam tomography to characterize nanoscale precipitates. A high strain rate servohydraulic test system was developed in conjunction with a modified tensile specimen geometry and a high speed camera for quantifying deformation. The effect of microstructure and applied strain rate on the local strain and strain rate distributions were quantified using digital image correlation. Necking behavior was analyzed using a novel mirror fixture, and the triaxial stresses associated with necking were corrected using a self-consistent method to obtain the true stress-true strain constitutive behavior. Fracture mechanisms were quantified as a function of strain rate. Finally, the relationship between solder microstructure and intermetallic compound layer thickness with the mechanical shock resistance of Sn-3.8Ag-0.7Cu solder joints was characterized. It was found that at low strain rates the dynamic solder joint strength was controlled by the solder microstructure, while at high strain rates it was controlled by the IMC layer. The influences of solder microstructure and IMC layer thickness were then isolated using extended reflow or isothermal aging treatments. It was found that at large IMC layer thicknesses the trend described above does not hold true. The fracture mechanisms associated with the dynamic solder joint strength regimes were analyzed.
ContributorsYazzie, Kyle (Author) / Chawla, Nikhilesh (Thesis advisor) / Sane, Sandeep (Committee member) / Jiang, Hanqing (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
151240-Thumbnail Image.png
Description
Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study

Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.
ContributorsSanyal, Sriya (Author) / Dai, Lenore L. (Thesis advisor) / Jiang, Hanqing (Committee member) / Lind, Mary L. (Committee member) / Phelan, Patrick (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2012
157078-Thumbnail Image.png
Description
A new type of electronics was envisioned, namely edible electronics. Edible electronics are made by Food and Drug Administration (FDA) certified edible materials which can be eaten and digested by human body. Different from implantable electronics, test or treatment using edible electronics doesn’t require operations and perioperative complications.

This dissertation

A new type of electronics was envisioned, namely edible electronics. Edible electronics are made by Food and Drug Administration (FDA) certified edible materials which can be eaten and digested by human body. Different from implantable electronics, test or treatment using edible electronics doesn’t require operations and perioperative complications.

This dissertation bridges the food industry, material sciences, device fabrication, and biomedical engineering by demonstrating edible supercapacitors and electronic components and devices such as pH sensor.

Edible supercapacitors were fabricated using food materials from grocery store. 5 of them were connected in series to power a snake camera. Tests result showed that the current generated by supercapacitor have the ability to kill bacteria. Next more food, processed food and non-toxic level electronic materials were investigated. A “preferred food kit” was created for component fabrication based on the investigation. Some edible electronic components, such as wires, resistor, inductor, etc., were developed and characterized utilizing the preferred food kit. These components make it possible to fabricate edible electronic/device in the future work. Some edible electronic components were integrated into an edible electronic system/device. Then edible pH sensor was introduced and fabricated. This edible pH sensor can be swallowed and test pH of gastric fluid. PH can be read in a phone within seconds after the pH sensor was swallowed. As a side project, an edible double network gel electrolyte was synthesized for the edible supercapacitor.
ContributorsXu, Wenwen (Author) / Jiang, Hanqing (Thesis advisor) / Dai, Lenore (Committee member) / Green, Matthew (Committee member) / Mu, Bin (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2019
153690-Thumbnail Image.png
Description
Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation.

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity, which is the focus of this research. Shock loading experiments were conducted via flyer-plate impact tests for pressures of 2-6 GPa and strain rates of 105/s on copper polycrystals of varying thermomechanical processing conditions. Serial cross sectioning of recovered target disks was performed along with electron microscopy, electron backscattering diffraction (EBSD), focused ion beam (FIB) milling, and 3-D X-ray tomogrpahy (XRT) to gain 2-D and 3-D information on the spall plane and surrounding microstructure. Statistics on grain boundaries (GB) containing damage were obtained from 2-D data and GBs of misorientations 25° and 50° were found to have the highest probability to contain damage in as-received (AR), heat treated (HT), and fully recrystallized (FR) microstructures, while {111} Σ3 GBs were globally strong. The AR microstructure’s probability peak was the most pronounced indicating GB strength is the dominant factor for damage nucleation. 3-D XRT data was used to digitally render the spall planes of the AR, HT, and FR microstructures. From shape fitting the voids to ellipsoids, it was found that the AR microstructure contained greater than 55% intergranular damage, whereas the HT and FR microstructures contained predominantly transgranular and coalesced damage modes, respectively. 3-D reconstructions of large volume damage sites in shocked Cu multicrystals showed preference for damage nucleation at GBs between adjacent grains of a high Taylor factor mismatches as well as an angle between the shock direction and the GB physical normal of ~30°-45°. 3-D FIB sectioning of individual voids led to the discovery of uniform plastic zones ~25-50% the size of the void diameter and plastic deformation directions were characterized via local average misorientation maps. Incipient transgranular voids revealed from the sectioning process were present in grains of high Taylor factors along the shock direction, which is expected as materials with a low Taylor factor along the shock direction are susceptible to growth due their accomodation of plastic deformation. Fabrication of square waves using photolithography and chemical etching was developed to study the nature of plasticity at GBs away from the spall plane. Grains oriented close to <0 1 1> had half the residual amplitudes than grains oriented close to <0 0 1>.
ContributorsBrown, Andrew (Author) / Peralta, Pedro (Committee member) / Mignolet, Marc (Committee member) / Sieradzki, Karl (Committee member) / Solanki, Kiran (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2015
154058-Thumbnail Image.png
Description
Environmentally responsive hydrogels are one interesting class of soft materials. Due to their remarkable responsiveness to stimuli such as temperature, pH, or light, they have attracted widespread attention in many fields. However, certain functionality of these materials alone is often limited in comparison to other materials such as silicon; thus,

Environmentally responsive hydrogels are one interesting class of soft materials. Due to their remarkable responsiveness to stimuli such as temperature, pH, or light, they have attracted widespread attention in many fields. However, certain functionality of these materials alone is often limited in comparison to other materials such as silicon; thus, there is a need to integrate soft and hard materials for the advancement of environmental-ly responsive materials.

Conventional hydrogels lack good mechanical properties and have inherently slow response time, important characteristics which must be improved before the hydrogels can be integrated with silicon. In the present dissertation work, both these important attrib-utes of a temperature responsive hydrogel, poly(N-isopropylacrylamide) (PNIPAAm), were improved by adopting a low temperature polymerization process and adding a sili-cate compound, tetramethyl orthosilicate. Furthermore, the transition temperature was modulated by adjusting the media quality in which the hydrogels were equilibrated, e.g. by adding a co-solvent (methanol) or an anionic surfactant (sodium dodecyl sulfate). In-terestingly, the results revealed that, based on the hydrogels’ porosity, there were appre-ciable differences when the PNIPAAm hydrogels interacted with the media molecules.

Next, an adhesion mechanism was developed in order to transfer silicon thin film onto the hydrogel surface. This integration provided a means of mechanical buckling of the thin silicon film due to changes in environmental stimuli (e.g., temperature, pH). We also investigated how novel transfer printing techniques could be used to generate pat-terned deformation of silicon thin film when integrated on a planar hydrogel substrate. Furthermore, we explore multilayer hybrid hydrogel structures formed by the integration of different types of hydrogels that have tunable curvatures under the influence of differ-ent stimuli. Silicon thin film integration on such tunable curvature substrates reveal char-acteristic reversible buckling of the thin film in the presence of multiple stimuli.

Finally, different approaches of incorporating visible light response in PNIPAAm are discussed. Specifically, a chemical chromophore- spirobenzopyran was synthesized and integrated through chemical cross-linking into the PNIPAAm hydrogels. Further, methods of improving the light response and mechanical properties were also demonstrat-ed. Interestingly, such a system was shown to have potential application as light modulated topography altering system
ContributorsChatterjee, Prithwish (Author) / Dai, Lenore L. (Thesis advisor) / Jiang, Hanqing (Thesis advisor) / Lind, Mary Laura (Committee member) / Yu, Hongyu (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2015
155105-Thumbnail Image.png
Description
The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial motion sensors including accelerometers, seismometers and inclinometers based on Molecular

The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial motion sensors including accelerometers, seismometers and inclinometers based on Molecular Electronic Transducers (MET) techniques.

Seismometers based on MET technology are attractive for planetary applications due to their high sensitivity, low noise floor, small size, absence of fragile mechanical moving parts and independence on the direction of sensitivity axis. By using MEMS techniques, a micro MET seismometer is developed with inter-electrode spacing close to 5 μm. The employment of MEMS improves the sensitivity of fabricated device to above 2500 V/(m/s2) under operating bias of 300 mV and input velocity of 8.4μm/s from 0.08Hz to 80Hz. The lowered hydrodynamic resistance by increasing the number of channels improves the self-noise to -135 dB equivalent to 18nG/√Hz (G=9.8m/s2) around 1.2 Hz.

Inspired by the advantages of combining MET and MEMS technologies on the development of seismometer, a feasibility study of development of a low frequency accelerometer utilizing MET technology with post-CMOS-compatible fabrication processes is performed. In the fabricated accelerometer, the complicated fabrication of mass-spring system in solid-state MEMS accelerometer is replaced with a much simpler post-CMOS-compatible process containing only deposition of a four-electrode MET structure on a planar substrate, and a liquid inertia mass of an electrolyte droplet. With a specific design of 3D printing based package and replace water based iodide solution by room temperature ionic liquid based electrolyte, the sensitivity relative to the ground motion can reach 103.69V/g, with the resolution of 5.25μG/√Hz at 1Hz.

By combining MET techniques and Zn-Cu electrochemical cell (Galvanic cell), this letter demonstrates a passive motion sensor powered by self-electrochemistry energy, named “Battery Accelerometer”. The experimental results indicated the peak sensitivity of battery accelerometer at its resonant frequency 18Hz is 10.4V/G with the resolution of 1.71μG without power consumption.
ContributorsLiang, Mengbing (Author) / Yu, Hongyu (Thesis advisor) / Dai, Lenore (Committee member) / Kozicki, Michael (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2016
158067-Thumbnail Image.png
Description
Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams, gels, colloids, polymers, and biological substances. Although soft materials already have numerous applications with each of their unique characteristics, integrating

Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams, gels, colloids, polymers, and biological substances. Although soft materials already have numerous applications with each of their unique characteristics, integrating materials to achieve complementary functionalities is still a growing need for designing advanced applications of complex requirements. This dissertation explores a unique approach of utilizing intermolecular interactions to accomplish not only the multifunctionality from combined materials but also their tailored properties designed for specific tasks. In this work, multifunctional soft materials are explored in two particular directions, ionic liquids (ILs)-based mixtures and interpenetrating polymer network (IPN).

First, ILs-based mixtures were studied to develop liquid electrolytes for molecular electronic transducers (MET) in planetary exploration. For space missions, it is challenging to operate any liquid electrolytes in an extremely low-temperature environment. By tuning intermolecular interactions, the results demonstrated a facile method that has successfully overcome the thermal and transport barriers of ILs-based mixtures at extremely low temperatures. Incorporation of both aqueous and organic solvents in ILs-based electrolyte systems with varying types of intermolecular interactions are investigated, respectively, to yield optimized material properties supporting not only MET sensors but also other electrochemical devices with iodide/triiodide redox couple targeting low temperatures.

Second, an environmentally responsive hydrogel was synthesized via interpenetrating two crosslinked polymer networks. The intermolecular interactions facilitated by such an IPN structure enables not only an upper critical solution temperature (UCST) transition but also a mechanical enhancement of the hydrogel. The incorporation of functional units validates a positive swelling response to visible light and also further improves the mechanical properties. This studied IPN system can serve as a promising route in developing “smart” hydrogels utilizing visible light as a simple, inexpensive, and remotely controllable stimulus.

Over two directions across from ILs to polymeric networks, this work demonstrates an effective strategy of utilizing intermolecular interactions to not only develop multifunctional soft materials for advanced applications but also discover new properties beyond their original boundaries.
ContributorsXu, Yifei (Author) / Dai, Lenore L. (Thesis advisor) / Forzani, Erica (Committee member) / Holloway, Julianne (Committee member) / Jiang, Hanqing (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2020