Matching Items (4)
Filtering by

Clear all filters

151219-Thumbnail Image.png
Description
The disordered nature of glass-forming melts results in two features for its dynamics i.e. non-Arrhenius and non-exponential behavior. Their macroscopic properties are studied through observing spatial heterogeneity of the molecular relaxation. Experiments performed in a low-frequency range tracks the flow of energy in time on slow degrees of freedom and

The disordered nature of glass-forming melts results in two features for its dynamics i.e. non-Arrhenius and non-exponential behavior. Their macroscopic properties are studied through observing spatial heterogeneity of the molecular relaxation. Experiments performed in a low-frequency range tracks the flow of energy in time on slow degrees of freedom and transfer to the vibrational heat bath of the liquid, as is the case for microwave heating. High field measurements on supercooled liquids result in generation of fictive temperatures of the absorbing modes which eventually result in elevated true bath temperatures. The absorbed energy allows us to quantify the changes in the 'configurational', real sample, and electrode temperatures. The slow modes absorb energy on the structural relaxation time scale causing the increase of configurational temperature resulting in the rise of dielectric loss. Time-resolved high field dielectric relaxation experiments show the impact of 'configurational heating' for low frequencies of the electric field and samples that are thermally clamped to a thermostat. Relevant thermal behavior of monohydroxy alcohols is considerably different from the cases of simple non-associating liquids, due to their distinct origins of the prominent dielectric loss. Monohydroxy alcohols display very small changes due to observed nonthermal effects without increasing sample temperature. These changes have been reflected in polymers in our measurements.
ContributorsPathak, Ullas (Author) / Richert, Ranko (Thesis advisor) / Dai, Lenore (Thesis advisor) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2012
150055-Thumbnail Image.png
Description
This dissertation provides a fundamental understanding of the impact of bulk polymer properties on the nanometer length scale modulus. The elastic modulus of amorphous organic thin films is examined using a surface wrinkling technique. Potential correlations between thin film behavior and intrinsic properties such as flexibility and chain length are

This dissertation provides a fundamental understanding of the impact of bulk polymer properties on the nanometer length scale modulus. The elastic modulus of amorphous organic thin films is examined using a surface wrinkling technique. Potential correlations between thin film behavior and intrinsic properties such as flexibility and chain length are explored. Thermal properties, glass transition temperature (Tg) and the coefficient of thermal expansion, are examined along with the moduli of these thin films. It is found that the nanometer length scale behavior of flexible polymers correlates to its bulk Tg and not the polymers intrinsic size. It is also found that decreases in the modulus of ultrathin flexible films is not correlated with the observed Tg decrease in films of the same thickness. Techniques to circumvent reductions from bulk modulus were also demonstrated. However, as chain flexibility is reduced the modulus becomes thickness independent down to 10 nm. Similarly for this series minor reductions in Tg were obtained. To further understand the impact of the intrinsic size and processing conditions; this wrinkling instability was also utilized to determine the modulus of small organic electronic materials at various deposition conditions. Lastly, this wrinkling instability is exploited for development of poly furfuryl alcohol wrinkles. A two-step wrinkling process is developed via an acid catalyzed polymerization of a drop cast solution of furfuryl alcohol and photo acid generator. The ability to control the surface topology and tune the wrinkle wavelength with processing parameters such as substrate temperature and photo acid generator concentration is also demonstrated. Well-ordered linear, circular, and curvilinear patterns are also obtained by selective ultraviolet exposure and polymerization of the furfuryl alcohol film. As a carbon precursor a thorough understanding of this wrinkling instability can have applications in a wide variety of technologies.
ContributorsTorres, Jessica (Author) / Vogt, Bryan D (Thesis advisor) / Stafford, Christopher M (Committee member) / Richert, Ranko (Committee member) / Rege, Kaushal (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2011
157424-Thumbnail Image.png
Description
A driving force for studies of water, alcohols, and amides is the determination of the role of hydrogen bonding. Hydrogen bonds can break and reform, consequently creating supramolecular structures. Understanding the role supramolecular structures play in the dynamics of monohydroxyl alcohols is important to understanding hydrogen bonding in more complex

A driving force for studies of water, alcohols, and amides is the determination of the role of hydrogen bonding. Hydrogen bonds can break and reform, consequently creating supramolecular structures. Understanding the role supramolecular structures play in the dynamics of monohydroxyl alcohols is important to understanding hydrogen bonding in more complex systems such as proteins. Since many monohydroxyl alcohols are good glass formers, dielectric spectroscopy in the supercooled regime is used to gather information about the dynamics of these liquids. Application of high external fields will reversibly alter the polarization responses of the material from the linear response. This results in nonlinear dielectric effects (NDE) such as field induced suppression (saturation) and enhancement of amplitudes (chemical effects) as well as shifts in the time constants toward slower (entropy) and faster (energy absorption) dynamics.

The first part of this thesis describes the nonlinear dielectric experiments on monohydroxyl alcohols, with an emphasis on the time dependence of NDEs. For the first time, time-dependent experiments on monoalcohols were done, the results showed that NDEs occur on the Debye time scale. Furthermore, physical vapor deposition (PVD) is used to modify the supramolecular structure of 4-methyl-3-heptanol. Upon deposition the film cannot form the ring like structures, which are preferred in the bulk material. The as deposited film shows an enhancement of the dielectric peak by a factor of approximately 11 when compared to the bulk material. The conversion from the as deposited material back to the near bulk material was found to occur on the Debye timescale.

The second part of this thesis focuses on the question of what is governing the field induced changes seen in the liquids studied. Here a complete set of high field experiments on highly polar propylene carbonate derivatives were performed. It was demonstrated that these materials exhibit a Debye-like peak and using a combination of Adam-Gibbs and Fröhlich’s definition of entropy, proposed by Johari [G.P. Johari, J. Chem. Phys 138, 154503 (2013)], cannot solely be used to describe a frustration of dynamics. It is important to note that although these material exhibit a Debye like peak, the behavior is much different than monoalcohols.
ContributorsYoung-Gonzales, Amanda R (Author) / Richert, Ranko (Thesis advisor) / Angell, Charles (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2019
154289-Thumbnail Image.png
Description
Broadband dielectric spectroscopy is a powerful technique for understanding the dynamics in supercooled liquids. It generates information about the timescale of the orientational motions of molecular dipoles within the liquid. However, dynamics of liquids measured in the non-linear response regime has recently become an area of significant interest, because additional

Broadband dielectric spectroscopy is a powerful technique for understanding the dynamics in supercooled liquids. It generates information about the timescale of the orientational motions of molecular dipoles within the liquid. However, dynamics of liquids measured in the non-linear response regime has recently become an area of significant interest, because additional information can be obtained compared with linear response measurements.

The first part of this thesis describes nonlinear dielectric relaxation experiments performed on various molecular glass forming-liquids, with an emphasis on the response at high frequencies (excess wing). A significant nonlinear dielectric effect (NDE) was found to persist in these modes, and the magnitude of this NDE traces the temperature dependence of the activation energy. A time resolved measurement technique monitoring the dielectric loss revealed that for the steady state NDE to develop it would take a very large number of high amplitude alternating current (ac) field cycles. High frequency modes were found to be ‘slaved’ to the average structural relaxation time, contrary to the standard picture of heterogeneity. Nonlinear measurements were also performed on the Johari-Goldstein β-relaxation process. High ac fields were found to modify the amplitudes of these secondary modes. The nonlinear features of this secondary process are reminiscent of those found for the excess wing regime, suggesting that these two contributions to dynamics have common origins.

The second part of this thesis describes the nonlinear effects observed from the application of high direct current (dc) bias fields superposed with a small amplitude sinusoidal ac field. For several molecular glass formers, the application of a dc field was found to slow down the system via reduction in configurational entropy (Adam-Gibbs relation). Time resolved measurements indicated that the rise of the non-linear effect is slower than its decay, as observed in the electro-optical Kerr effect. A model was discussed which quantitatively captures the observed magnitudes and time dependencies of the NDE. Asymmetry in these rise and decay times was demonstrated as a consequence of the quadratic field dependence of the entropy change. It was demonstrated that the high bias field modifies the polarization response to the field, even including the zero field limit.
ContributorsSamanta, Subarna (Author) / Richert, Ranko (Thesis advisor) / Steimle, Timothy (Committee member) / Wolf, George H. (Committee member) / Arizona State University (Publisher)
Created2016