Matching Items (41)
Filtering by

Clear all filters

151979-Thumbnail Image.png
Description
Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the

Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the interface, new self-assembly phenomena emerge. ILs are ionic compounds that are liquid at room temperature (essentially molten salts at ambient conditions) that have remarkable properties such as negligible volatility and high chemical stability and can be optimized for nearly any application. The nature of IL-fluid interfaces has not yet been studied in depth. Consequently, the corresponding self-assembly phenomena have not yet been explored. We demonstrate how the unique molecular nature of ILs allows for new self-assembly phenomena to take place at their interfaces. These phenomena include droplet bridging (the self-assembly of both particles and emulsion droplets), spontaneous particle transport through the liquid-liquid interface, and various gelation behaviors. In droplet bridging, self-assembled monolayers of particles effectively "glue" emulsion droplets to one another, allowing the droplets to self-assembly into large networks. With particle transport, it is experimentally demonstrated the ILs overcome the strong adhesive nature of the liquid-liquid interface and extract solid particles from the bulk phase without the aid of external forces. These phenomena are quantified and corresponding mechanisms are proposed. The experimental investigations are supported by molecular dynamics (MD) simulations, which allow for a molecular view of the self-assembly process. In particular, we show that particle self-assembly depends primarily on the surface chemistry of the particles and the non-IL fluid at the interface. Free energy calculations show that the attractive forces between nanoparticles and the liquid-liquid interface are unusually long-ranged, due to capillary waves. Furthermore, IL cations can exhibit molecular ordering at the IL-oil interface, resulting in a slight residual charge at this interface. We also explore the transient IL-IL interface, revealing molecular interactions responsible for the unusually slow mixing dynamics between two ILs. This dissertation, therefore, contributes to both experimental and theoretical understanding of particle self-assembly at IL based interfaces.
ContributorsFrost, Denzil (Author) / Dai, Lenore L (Thesis advisor) / Torres, César I (Committee member) / Nielsen, David R (Committee member) / Squires, Kyle D (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2013
153074-Thumbnail Image.png
Description
Identification of early damage in polymer composite materials is of significant importance so that preventative measures can be taken before the materials reach catastrophic failure. Scientists have been developing damage detection technologies over many years and recently, mechanophore-based polymers, in which mechanical energy is translated to activate a chemical transformation,

Identification of early damage in polymer composite materials is of significant importance so that preventative measures can be taken before the materials reach catastrophic failure. Scientists have been developing damage detection technologies over many years and recently, mechanophore-based polymers, in which mechanical energy is translated to activate a chemical transformation, have received increasing attention. More specifically, the damage can be made detectable by mechanochromic polymers, which provide a visible color change upon the scission of covalent bonds under stress. This dissertation focuses on the study of a novel self-sensing framework for identifying early and in-situ damage by employing unique stress-sensing mechanophores. Two types of mechanophores, cyclobutane and cyclooctane, were utilized, and the former formed from cinnamoyl moeities and the latter formed from anthracene upon photodimerization. The effects on the thermal and mechanical properties with the addition of the cyclobutane-based polymers into epoxy matrices were investigated. The emergence of cracks was detected by fluorescent signals at a strain level right after the yield point of the polymer blends, and the fluorescence intensified with the accumulation of strain. Similar to the mechanism of fluorescence emission from the cleavage of cyclobutane, the cyclooctane moiety generated fluorescent emission with a higher quantum yield upon cleavage. The experimental results also demonstrated the success of employing the cyclooctane type mechanophore as a potential force sensor, as the fluorescence intensification was correlated with the strain increase.
ContributorsZou, Jin (Author) / Dai, Lenore L (Thesis advisor) / Chattopadhyay, Aditi (Thesis advisor) / Lind, Mary L (Committee member) / Mu, Bin (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
153181-Thumbnail Image.png
Description
We report the synthesis of novel boronic acid-containing metal-organic frameworks (MOFs), which was synthesized via solvothermal synthesis of cobalt nitride with 3,5-Dicarboxyphenylboronic acid (3,5-DCPBC). Powder X-ray diffraction and BET surface area analysis have been used to verify the successful synthesis of this microporous material.

We have also made the attempts

We report the synthesis of novel boronic acid-containing metal-organic frameworks (MOFs), which was synthesized via solvothermal synthesis of cobalt nitride with 3,5-Dicarboxyphenylboronic acid (3,5-DCPBC). Powder X-ray diffraction and BET surface area analysis have been used to verify the successful synthesis of this microporous material.

We have also made the attempts of using zinc nitride and copper nitride as metal sources to synthesize the boronic acid-containing MOFs. However, the attempts were not successful. The possible reason is the existence of copper and zinc ions catalyzed the decomposition of 3,5-Dicarboxyphenylboronic acid, forming isophthalic acid. The ended product has been proved to be isophthalic acid crystals by the single crystal X-ray diffraction. The effects of solvents, reaction temperature, and added bases were investigated. The addition of triethylamine has been shown to tremendously improve the sample crystallinity by facilitating ligand deprotonation
ContributorsYu, Jiuhao (Author) / Mu, Bin (Thesis advisor) / Forzani, Erica (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2014
153163-Thumbnail Image.png
Description
With the aid of metabolic pathways engineering, microbes are finding increased use as biocatalysts to convert renewable biomass resources into fine chemicals, pharmaceuticals and other valuable compounds. These alternative, bio-based production routes offer distinct advantages over traditional synthesis methods, including lower energy requirements, rendering them as more "green" and

With the aid of metabolic pathways engineering, microbes are finding increased use as biocatalysts to convert renewable biomass resources into fine chemicals, pharmaceuticals and other valuable compounds. These alternative, bio-based production routes offer distinct advantages over traditional synthesis methods, including lower energy requirements, rendering them as more "green" and "eco-friendly". Escherichia coli has recently been engineered to produce the aromatic chemicals (S)-styrene oxide and phenol directly from renewable glucose. Several factors, however, limit the viability of this approach, including low titers caused by product inhibition and/or low metabolic flux through the engineered pathways. This thesis focuses on addressing these concerns using magnetic mesoporous carbon powders as adsorbents for continuous, in-situ product removal as a means to alleviate such limitations. Using process engineering as a means to troubleshoot metabolic pathways by continuously removing products, increased yields are achieved from both pathways. By performing case studies in product toxicity and reaction equilibrium it was concluded that each step of a metabolic pathway can be optimized by the strategic use of in-situ adsorption as a process engineering tool.
ContributorsVasudevan, Anirudh (Author) / Nielsen, David R (Thesis advisor) / Torres, César I (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2014
151266-Thumbnail Image.png
Description
This dissertation provides a fundamental understanding of the properties of mesoporous carbon based materials and the utilization of those properties into different applications such as electrodes materials for super capacitors, adsorbents for water treatments and biosensors. The thickness of mesoporous carbon films on Si substrates are measured by Ellipsometry method

This dissertation provides a fundamental understanding of the properties of mesoporous carbon based materials and the utilization of those properties into different applications such as electrodes materials for super capacitors, adsorbents for water treatments and biosensors. The thickness of mesoporous carbon films on Si substrates are measured by Ellipsometry method and pore size distribution has been calculated by Kelvin equation based on toluene adsorption and desorption isotherms monitored by Ellipsometer. The addition of organometallics cobalt and vanalyl acetylacetonate in the synthesis precursor leads to the metal oxides in the carbon framework, which largely decreased the shrink of the framework during carbonization, resulting in an increase in the average pore size. In addition to the structural changes, the introduction of metal oxides into mesoporous carbon framework greatly enhances the electrochemical performance as a result of their pseudocapacitance. Also, after the addition of Co into the framework, the contraction of mesoporous powders decreased significantly and the capacitance increased prominently because of the solidification function of CoO nanoparticles. When carbon-cobalt composites are used as adsorbent, the adsorption capacity of dye pollutant in water is remarkably higher (90 mg/g) after adding Co than the mesoporous carbon powder (2 mg/g). Furthermore, the surface area and pore size of mesoporous composites can be greatly increased by addition of tetraethyl orthosilicate into the precursor with subsequent etching, which leads to a dramatic increase in the adsorption capacity from 90 mg/g up to 1151 mg/g. When used as electrode materials for amperometric biosensors, mesoporous carbons showed good sensitivity, selectivity and stability. And fluorine-free and low-cost poly (methacrylate)s have been developed as binders for screen printed biosensors. With using only 5wt% of poly (hydroxybutyl methacrylate), the glucose sensor maintained mechanical integrity and exhibited excellent sensitivity on detecting glucose level in whole rabbit blood. Furthermore, extremely high surface area mesoporous carbons have been synthesized by introducing inorganic Si precursor during self-assembly, which effectively determined norepinephrine at very low concentrations.
ContributorsDai, Mingzhi (Author) / Vogt, Bryan D (Thesis advisor) / La Belle, Jeffrey T (Committee member) / Dai, Lenore (Committee member) / Nielsen, David R (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2012
154071-Thumbnail Image.png
Description
Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on

Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on design and synthesis of environmentally responsive microgels and their composites, and encompasses methods of utilizing microgel systems in applications as vehicles for the adsorption, retention, and targeted delivery of chemical species. Furthermore, self-assembled microgel particles at ionic liquid (IL)-water interfaces demonstrate responsive colloidal lattice morphology. The thesis first reports on the fundamental aspects of synthesis, functionalization, and characteristic properties of multifunctional environmentally responsive microgels derived from poly(N-isopropylacrylamide) (PNIPAm) and other functional co-monomers. In particular, the uptake and release of active chemical species such as rheology modifiers into and from these ionic microgels is demonstrated. Moreover, a facile tunable method for the formation of organic-inorganic composites with Fe3O4 nanoparticles adsorbed and embedded within ionic microgel particles is explored. Additionally, the development of zwitterionic microgels (ZI-MG) is presented. These aqueous ZI-MG dispersions exhibit reversible parabolic swelling as a function of pH and display a minimum hydrodynamic diameter at a tunable isoelectric point (IEP). This study also elucidates the controlled uptake and release of surfactants from these particle systems. The extent of surfactant loading and the ensuing relative swelling/deswelling behaviors within the polymer networks are explained in terms of their binding interactions. The latter part of this thesis highlights the versatility of fluorescently labeled microgel particles as stabilizers for IL-water droplets. When the prepared particles form monolayers and equilibrate at the liquid-liquid interface, the colloidal lattice organization may re-order itself depending on the surface charge of these particles. Finally, it is shown that the spontaneously formed and densely packed layers of microgel particles can be employed for extraction applications, as the interface remains permeable to small active species.
ContributorsChen, Haobo (Author) / Dai, Lenore L (Committee member) / Chen, Kangping (Committee member) / Forzani, Erica (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2015
155914-Thumbnail Image.png
Description
Membrane technology is a viable option to debottleneck distillation processes and minimize the energy burden associated with light hydrocarbon mixture separations. Zeolitic imidazolate frameworks (ZIFs) are a new class of microporous metal-organic frameworks with highly tailorable zeolitic pores and unprecedented separation characteristics. ZIF-8 membranes demonstrate superior separation performance for propylene/propane

Membrane technology is a viable option to debottleneck distillation processes and minimize the energy burden associated with light hydrocarbon mixture separations. Zeolitic imidazolate frameworks (ZIFs) are a new class of microporous metal-organic frameworks with highly tailorable zeolitic pores and unprecedented separation characteristics. ZIF-8 membranes demonstrate superior separation performance for propylene/propane (C3) and hydrogen/hydrocarbon mixtures at room temperature. However, to date, little is known about the static thermal stability and ethylene/ethane (C2) separation characteristics of ZIF-8. This dissertation presents a set of fundamental studies to investigate the thermal stability, transport and modification of ZIF-8 membranes for light hydrocarbon separations.

Static TGA decomposition kinetics studies show that ZIF-8 nanocrystals maintain their crystallinity up to 200○C in inert, oxidizing and reducing atmospheres. At temperatures of 250○C and higher, the findings herein support the postulation that ZIF-8 nanocrystals undergo temperature induced decomposition via thermolytic bond cleaving reactions to form an imidazole-Zn-azirine structure. The crystallinity/bond integrity of ZIF-8 membrane thin films is maintained at temperatures below 150○C.

Ethane and ethylene transport was studied in single and binary gas mixtures. Thermodynamic parameters derived from membrane permeation and crystal adsorption experiments show that the C2 transport mechanism is controlled by adsorption rather than diffusion. Low activation energy of diffusion values for both C2 molecules and limited energetic/entropic diffusive selectivity are observed for C2 molecules despite being larger than the nominal ZIF-8 pore aperture and is due to pore flexibility.

Finally, ZIF-8 membranes were modified with 5,6 dimethylbenzimidazole through solvent assisted membrane surface ligand exchange to narrow the pore aperture for enhanced molecular sieving. Results show that relatively fast exchange kinetics occur at the mainly at the outer ZIF-8 membrane surface between 0-30 minutes of exchange. Short-time exchange enables C3 selectivity increases with minimal olefin permeance losses. As the reaction proceeds, the ligand exchange rate slows as the 5,6 DMBIm linker proceeds into the ZIF-8 inner surface, exchanges with the original linker and first disrupts the original framework’s crystallinity, then increases order as the reaction proceeds. The ligand exchange rate increases with temperature and the H2/C2 separation factor increases with increases in ligand exchange time and temperature.
ContributorsJames, Joshua B. (Author) / Lin, Jerry Y.S. (Thesis advisor) / Emady, Heather (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Seo, Dong (Committee member) / Arizona State University (Publisher)
Created2017
156142-Thumbnail Image.png
Description
Graphene oxide membranes have shown promising gas separation characteristics specially for hydrogen that make them of interest for industrial applications. However, the gas transport mechanism for these membranes is unclear due to inconsistent permeation and separation results reported in literature. Graphene oxide membranes made by filtration, the most common synthesis

Graphene oxide membranes have shown promising gas separation characteristics specially for hydrogen that make them of interest for industrial applications. However, the gas transport mechanism for these membranes is unclear due to inconsistent permeation and separation results reported in literature. Graphene oxide membranes made by filtration, the most common synthesis method, contain wrinkles affecting their gas separation characteristics and the method itself is difficult to scale up. Moreover, the production of graphene oxide membranes with fine-tuned interlayer spacing for improved molecular separation is still a challenge. These unsolved issues will affect their potential impact on industrial gas separation applications.

In this study, high quality graphene oxide membranes are synthesized on polyester track etch substrates by different deposition methods and characterized by XRD, SEM, AFM as well as single gas permeation and binary (H2/CO2) separation experiments. Membranes are made from large graphene oxide sheets of different sizes (33 and 17 micron) using vacuum filtration to shed more light on their transport mechanism. Membranes are made from dilute graphene oxide suspension by easily scalable spray coating technique to minimize extrinsic wrinkle formation. Finally, Brodie’s derived graphene oxide sheets were used to prepare membranes with narrow interlayer spacing to improve their (H2/CO2) separation performance.

An inter-sheet and inner-sheet two-pathway model is proposed to explain the permeation and separation results of graphene oxide membranes obtained in this study. At room temperature, large gas molecules (CH4, N2, and CO2) permeate through inter-sheet pathway of the membranes, exhibiting Knudsen like diffusion characteristics, with the permeance for the small sheet membrane about twice that for the large sheet membrane. The small gases (H2 and He) exhibit much higher permeance, showing significant flow through an inner-sheet pathway, in addition to the flow through the inter-sheet pathway. Membranes prepared by spray coating offer gas characteristics similar to those made by filtration, however using dilute graphene oxide suspension in spray coating will help reduce the formation of extrinsic wrinkles which result in reduction in the porosity of the inter-sheet pathway where the transport of large gas molecules dominates. Brodie’s derived graphene oxide membranes showed overall low permeability and significant improvement in in H2/CO2 selectivity compared to membranes made using Hummers’ derived sheets due to smaller interlayer space height of Brodie’s sheets (~3 Å).
ContributorsIbrahim, Amr Fatehy Muhammad (Author) / Lin, Jerry Y.S. (Thesis advisor) / Mu, Bin (Committee member) / Lind, Mary (Committee member) / Green, Matthew (Committee member) / Wang, Qing (Committee member) / Arizona State University (Publisher)
Created2018
156407-Thumbnail Image.png
Description
In this study, the differences in delivery of methylated and unmethylated prokaryotic

DNA in mammalian cells was investigated. 3 plasmids, DH5-α, ER2925 and

GM272 were extracted and transformed from E. coli bacteria. DH5-α is the regular

methylated plasmid, however,ER2925 and GM272 lack Dam and Dcm enzymes which

methylate adenine and internal cytosine in prokaryotes

In this study, the differences in delivery of methylated and unmethylated prokaryotic

DNA in mammalian cells was investigated. 3 plasmids, DH5-α, ER2925 and

GM272 were extracted and transformed from E. coli bacteria. DH5-α is the regular

methylated plasmid, however,ER2925 and GM272 lack Dam and Dcm enzymes which

methylate adenine and internal cytosine in prokaryotes respectively, hence they are

unmethylated. The 3 plasmids were delivered via different delivery vectors in two

cell lines, UMUC3 and MDA-MB-231 which are human bladder cancer cell line and

human triple negative breast cancer cell line, respectively.

Luciferase and BCA assay were carried out to quantify transgene expression to

compare the efficacy of gene delivery in three aforementioned plasmids. In addition,

hydrodynamic diameter and zeta potential was measured for all delivery vectors, to

correlate with other transgene expression data. The results show that methylated

plasmid has significantly higher transgene expression in mammalian cell lines. This

can be either a result of smaller size and more positive zeta potential that the methylated

plasmid had, or a result of having Dam and Dcm enzymes which enhance binding

of DNA and transcription factors and enhance gene expression. Having smaller size

and more positive zeta potential was proven to be the case for the methylated plasmid

in this study. However the latter hypothesis should be investigated furthermore.
ContributorsMeraji, Seyedehmelika (Author) / Rege, Kaushal (Thesis advisor) / Nannegna, Brent (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2018
156394-Thumbnail Image.png
Description
Encapsulant is a key packaging component of photovoltaic (PV) modules, which protects the solar cell from physical, environmental and electrical damages. Ethylene-vinyl acetate (EVA) is one of the major encapsulant materials used in the PV industry. This work focuses on indoor accelerated ultraviolet (UV) stress testing and characterization to investigate

Encapsulant is a key packaging component of photovoltaic (PV) modules, which protects the solar cell from physical, environmental and electrical damages. Ethylene-vinyl acetate (EVA) is one of the major encapsulant materials used in the PV industry. This work focuses on indoor accelerated ultraviolet (UV) stress testing and characterization to investigate the EVA discoloration and delamination in PV modules by using various non-destructive characterization techniques, including current-voltage (IV) measurements, UV fluorescence (UVf) and colorimetry measurements. Mini-modules with glass/EVA/cell/EVA/backsheet construction were fabricated in the laboratory with two types of EVA, UV-cut EVA (UVC) and UV-pass EVA (UVP).

The accelerated UV testing was performed in a UV chamber equipped with UV lights at an ambient temperature of 50°C, little or no humidity and total UV dosage of 400 kWh/m2. The mini-modules were maintained at three different temperatures through UV light heating by placing different thickness of thermal insulation sheets over the backsheet. Also, prior to thermal insulation sheet placement, the backsheet and laminate edges were fully covered with aluminum tape to prevent oxygen diffusion into the module and hence the photobleaching reaction.

The characterization results showed that mini-modules with UV-cut EVA suffered from discoloration while the modules with UV-pass EVA suffered from delamination. UVf imaging technique has the capability to identify the discoloration region in the UVC modules in the very early stage when the discoloration is not visible to the naked eyes, whereas Isc measurement is unable to measure the performance loss until the color becomes visibly darker. YI also provides the direct evidence of yellowing in the encapsulant. As expected, the extent of degradation due to discoloration increases with the increase in module temperature. The Isc loss is dictated by both the regions – discolored area at the center and non-discolored area at the cell edges, whereas the YI is only determined at the discolored region due to low probe area. This led to the limited correlation between Isc and YI in UVC modules.

In case of UVP modules, UV radiation has caused an adverse impact on the interfacial adhesion between the EVA and solar cell, which was detected from UVf images and severe Isc loss. No change in YI confirms that the reason for Isc loss is not due to yellowing but the delamination.

Further, the activation energy of encapsulant discoloration was estimated by using Arrhenius model on two types of data, %Isc drop and ΔYI. The Ea determined from the change in YI data for the EVA encapsulant discoloration reaction without the influence of oxygen and humidity is 0.61 eV. Based on the activation energy determined in this work and hourly weather data of any site, the degradation rate for the encaspulant browning mode can be estimated.
ContributorsDolia, Kshitiz (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Green, Matthew (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2018