Matching Items (13)
Filtering by

Clear all filters

157715-Thumbnail Image.png
Description
Aromatic compounds have traditionally been generated via petroleum feedstocks and have wide ranging applications in a variety of fields such as cosmetics, food, plastics, and pharmaceuticals. Substantial improvements have been made to sustainably produce many aromatic chemicals from renewable sources utilizing microbes as bio-factories. By assembling and optimizing

Aromatic compounds have traditionally been generated via petroleum feedstocks and have wide ranging applications in a variety of fields such as cosmetics, food, plastics, and pharmaceuticals. Substantial improvements have been made to sustainably produce many aromatic chemicals from renewable sources utilizing microbes as bio-factories. By assembling and optimizing native and non-native pathways to produce natural and non-natural bioproducts, the diversity of biochemical aromatics which can be produced is constantly being improved upon. One such compound, 2-Phenylethanol (2PE), is a key molecule used in the fragrance and food industries, as well as a potential biofuel. Here, a novel, non-natural pathway was engineered in Escherichia coli and subsequently evaluated. Following strain and bioprocess optimization, accumulation of inhibitory acetate byproduct was reduced and 2PE titers approached 2 g/L – a ~2-fold increase over previously implemented pathways in E. coli. Furthermore, a recently developed mechanism to

allow E. coli to consume xylose and glucose, two ubiquitous and industrially relevant microbial feedstocks, simultaneously was implemented and systematically evaluated for its effects on L-phenylalanine (Phe; a precursor to many microbially-derived aromatics such as 2PE) production. Ultimately, by incorporating this mutation into a Phe overproducing strain of E. coli, improvements in overall Phe titers, yields and sugar consumption in glucose-xylose mixed feeds could be obtained. While upstream efforts to improve precursor availability are necessary to ultimately reach economically-viable production, the effect of end-product toxicity on production metrics for many aromatics is severe. By utilizing a transcriptional profiling technique (i.e., RNA sequencing), key insights into the mechanisms behind styrene-induced toxicity in E. coli and the cellular response systems that are activated to maintain cell viability were obtained. By investigating variances in the transcriptional response between styrene-producing cells and cells where styrene was added exogenously, better understanding on how mechanisms such as the phage shock, heat-shock and membrane-altering responses react in different scenarios. Ultimately, these efforts to diversify the collection of microbially-produced aromatics, improve intracellular precursor pools and further the understanding of cellular response to toxic aromatic compounds, give insight into methods for improved future metabolic engineering endeavors.
ContributorsMachas, Michael (Author) / Nielsen, David R (Thesis advisor) / Haynes, Karmella (Committee member) / Wang, Xuan (Committee member) / Nannenga, Brent (Committee member) / Varman, Arul (Committee member) / Arizona State University (Publisher)
Created2019
161493-Thumbnail Image.png
Description
Metabolic engineering of bacteria has become a viable technique as a sustainable and efficient method for the production of biochemicals. Two main goals were explored: investigating styrene tolerance genes in E. coli and engineering cyanobacteria for the high yield production of L-serine. In the first study, genes that were shown

Metabolic engineering of bacteria has become a viable technique as a sustainable and efficient method for the production of biochemicals. Two main goals were explored: investigating styrene tolerance genes in E. coli and engineering cyanobacteria for the high yield production of L-serine. In the first study, genes that were shown to be highly differentially expressed in E. coli upon styrene exposure were further investigated by testing the effects of their deletion and overexpression on styrene tolerance and growth. It was found that plsX, a gene responsible for the phospholipid formation in membranes, had the most promising results when overexpressed at 10 µM IPTG, with a relative OD600 of 706 ± 117% at 175 mg/L styrene when compared to the control plasmid at the same concentration. This gene is likely to be effective target when engineering styrene- and other aromatic-producing strains, increasing titers by reducing their cytotoxicity.In the second study, the goal is to engineer the cyanobacterium Synechococcus sp. PCC 7002 for the overproduction of L-serine. As a robust, photosynthetic bacteria, it has potential for being used in such-rich states to capture CO2 and produce industrially relevant products. In order to increase L-serine titers, a key degradation gene, ilvA, must be removed. While ilvA is responsible for degrading L-serine into pyruvate, it is also responsible for initiating the only known pathway for the production of isoleucine. Herein, we constructed a plasmid containing the native A0730 gene in order to investigate its potential to restore isoleucine production. If functional, a Synechococcus sp. PCC 7002 ΔilvA strain can then be engineered with minimal effects on growth and an expected increase in L-serine accumulation.
ContributorsAbed, Omar (Author) / Nielsen, David R (Thesis advisor) / Varman, Arul M (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2021
161599-Thumbnail Image.png
Description
Bioconversion of lignocellulosic sugars is often suboptimal due to global regulatory mechanisms such as carbon catabolite repression and incomplete/inefficient metabolic pathways. While conventional bioprocessing strategies for metabolic engineering have predominantly focused on a single engineered strain, the alternative development of synthetic microbial communities facilitates the execution of complex metabolic tasks

Bioconversion of lignocellulosic sugars is often suboptimal due to global regulatory mechanisms such as carbon catabolite repression and incomplete/inefficient metabolic pathways. While conventional bioprocessing strategies for metabolic engineering have predominantly focused on a single engineered strain, the alternative development of synthetic microbial communities facilitates the execution of complex metabolic tasks by exploiting unique community features (i.e., modularity, division of labor, and facile tunability). In this dissertation, these features are leveraged to develop a suite of generalizable strategies and transformative technologies for engineering Escherichia coli coculture systems to more efficiently utilize lignocellulosic sugar mixtures. This was achieved by rationally pairing and systematically engineering catabolically-orthogonal Escherichia coli sugar specialists. Coculture systems were systematically engineered, as derived from either wild-type Escherichia coli W, ethanologenic LY180, lactogenic TG114 or succinogenic KJ122. Net catabolic activities were then readily balanced by simple tuning of the inoculum ratio between sugar specialists, ultimately enabling improved co-utilization (98% of 100 g L-1 total sugars) of glucose-xylose mixtures (2:1 by mass) under simple batch fermentation conditions. We next extended this strategy to a coculture-coproduction system capable of capturing and fixing CO2 evolved during biofuel production through inter-strain metabolic cooperation. Holistically, this work contributes to an improved understanding of the dynamic behavior of synthetic microbial consortia as enhanced bioproduction platforms and carbon conservation strategy for renewable fuels and chemicals from non-food carbohydrates
ContributorsFlores, Andrew David (Author) / Nielsen, David R (Thesis advisor) / Wang, Xuan (Thesis advisor) / Varman, Arul M (Committee member) / Nannenga, Brent (Committee member) / Wheeldon, Ian (Committee member) / Arizona State University (Publisher)
Created2021