Matching Items (19)
Filtering by

Clear all filters

153370-Thumbnail Image.png
Description
Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well

Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H6/C3H8 separation properties of MFI zeolite membrane and CMS membrane.

MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H6/C3H8 mixture separation.

CMS membranes were synthesized by coating/pyrolysis method on mesoporous γ-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N2 and C3H6 and C3H6/C3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores.

CMS membranes demonstrate excellent C3H6/C3H8 separation performance over a wide range of feed pressure, composition and operation temperature. No plasticization was observed at a feed pressure up to 100 psi. The permeation and separation is mainly controlled by diffusion instead of adsorption. CMS membrane experienced a decline in permeance, and an increase in selectivity over time under on-stream C3H6/C3H8 separation. This aging behavior is due to the reduction in effective pore size and porosity caused by oxygen chemisorption and physical aging of the membrane structure.
ContributorsMa, Xiaoli (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2015
149707-Thumbnail Image.png
Description
Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas

Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas (10-15% CO2, 70% N2), which can range from a few hundred to as high as 1000°C. Conventional microporous membranes (carbons/silicas/zeolites) are capable of separating CO2 from N2 at low temperatures, but cannot achieve separation above 200°C. To overcome the limitations of microporous membranes, a novel ceramic-carbonate dual-phase membrane for high temperature CO2 separation was proposed. The membrane was synthesized from porous La0.6Sr0.4Co0.8Fe0.2O3-d (LSCF) supports and infiltrated with molten carbonate (Li2CO3/Na2CO3/K2CO3). The CO2 permeation mechanism involves a reaction between CO2 (gas phase) and O= (solid phase) to form CO3=, which is then transported through the molten carbonate (liquid phase) to achieve separation. The effects of membrane thickness, temperature and CO2 partial pressure were studied. Decreasing thickness from 3.0 to 0.375 mm led to higher fluxes at 900°C, ranging from 0.186 to 0.322 mL.min-1.cm-2 respectively. CO2 flux increased with temperature from 700 to 900°C. Activation energy for permeation was similar to that for oxygen ion conduction in LSCF. For partial pressures above 0.05 atm, the membrane exhibited a nearly constant flux. From these observations, it was determined that oxygen ion conductivity limits CO2 permeation and that the equilibrium oxygen vacancy concentration in LSCF is dependent on the partial pressure of CO2 in the gas phase. Finally, the dual-phase membrane was used as a membrane reactor. Separation at high temperatures can produce warm, highly concentrated streams of CO2 that could be used as a chemical feedstock for the synthesis of syngas (H2 + CO). Towards this, three different membrane reactor configurations were examined: 1) blank system, 2) LSCF catalyst and 3) 10% Ni/y-alumina catalyst. Performance increased in the order of blank system < LSCF catalyst < Ni/y-alumina catalyst. Favorable conditions for syngas production were high temperature (850°C), low sweep gas flow rate (10 mL.min-1) and high methane concentration (50%) using the Ni/y-alumina catalyst.
ContributorsAnderson, Matthew Brandon (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Rege, Kaushal (Committee member) / Anderson, James (Committee member) / Rivera, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
156155-Thumbnail Image.png
Description
This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20µm to 100µm with

This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20µm to 100µm with an aspect ratio of 0.5 to 1.5 and fine line patterns defined by photolithography. Photolithography defined pattern regions incorporate a wide variety of feature sizes including large circular pad structures with diameter of 20µm - 200µm, fine traces with varying widths of 3µm - 30µm and additional planar regions to define a IC substrate package. Electrodeposition of copper is performed to establish the desired circuit. Electrodeposition of copper in IC substrate applications holds certain unique challenges in that they require a low cost manufacturing process that enables a void-free gap fill inside the microvia along with uniform deposition of copper on exposed patterned regions. Deposition time scales to establish the desired metal thickness for such packages could range from several minutes to few hours. This work showcases a reverse pulse electrodeposition methodology that achieves void-free gap fill inside the microvia and uniform plating in FLS (Fine Lines and Spaces) regions with significantly higher deposition rates than traditional approaches. In order to achieve this capability, systematic experimental and simulation studies were performed. A strong correlation of independent parameters that govern the electrodeposition process such as bath temperature, reverse pulse plating parameters and the ratio of electrolyte concentrations is shown to the deposition kinetics and deposition uniformity in fine patterned regions and gap fill rate inside the microvia. Additionally, insight into the physics of via fill process is presented with secondary and tertiary current simulation efforts. Such efforts lead to show “smart” control of deposition rate at the top and bottom of via to avoid void formation. Finally, a parametric effect on grain size and the ensuing copper metallurgical characteristics of bulk copper is also shown to enable high reliability substrate packages for the IC packaging industry.
ContributorsGanesan, Kousik (Author) / Tasooji, Amaneh (Thesis advisor) / Manepalli, Rahul (Committee member) / Alford, Terry (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2018
156129-Thumbnail Image.png
Description
An urgent need for developing new chemical separations that address the capture of dilute impurities from fluid streams are needed. These separations include the capture of carbon dioxide from the atmosphere, impurities from drinking water, and toxins from blood streams. A challenge is presented when capturing these impurities because the

An urgent need for developing new chemical separations that address the capture of dilute impurities from fluid streams are needed. These separations include the capture of carbon dioxide from the atmosphere, impurities from drinking water, and toxins from blood streams. A challenge is presented when capturing these impurities because the energy cost for processing the bulk fluid stream to capture trace contaminants is too great using traditional thermal separations. The development of sorbents that may capture these contaminants passively has been emphasized in academic research for some time, producing many designer materials including metal-organic frameworks (MOFs) and polymeric resins. Scaffolds must be developed to effectively anchor these materials in a passing fluid stream. In this work, two design techniques are presented for anchoring these sorbents in electrospun fiber scaffolds.

The first technique involves imbedding sorbent particles inside the fibers: forming particle-embedded fibers. It is demonstrated that particles will spontaneously coat themselves in the fibers at dilute loadings, but at higher loadings some get trapped on the fiber surface. A mathematical model is used to show that when these particles are embedded, the polymeric coating provided by the fibers may be designed to increase the kinetic selectivity and/or stability of the embedded sorbents. Two proof-of-concept studies are performed to validate this model including the increased selectivity of carbon dioxide over nitrogen when the MOF ZIF-8 is embedded in a poly(ethylene oxide) and Matrimid polymer blend; and that increased hydrothermal stability is realized when the water-sensitive MOF HKUST-1 is embedded in polystyrene fibers relative to pure HKUST-1 powder.

The second technique involves the creation of a pore network throughout the fiber to increase accessibility of embedded sorbent particles. It is demonstrated that the removal of a blended highly soluble polymer additive from the spun particle-containing fibers leaves a pore network behind without removing the embedded sorbent. The increased accessibility of embedded sorbents is validated by embedding a known direct air capture sorbent in porous electrospun fibers, and demonstrating that they have the fastest kinetic uptake of any direct air capture sorbent reported in literature to date, along with over 90% sorbent accessibility.
ContributorsArmstrong, Mitchell (Author) / Mu, Bin (Thesis advisor) / Green, Matthew (Committee member) / Seo, Dong (Committee member) / Lackner, Klaus (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2018
157367-Thumbnail Image.png
Description
Granulation is a process within particle technology where a liquid binding agent is added to a powder bed to create larger granules to modify bulk properties for easier processing. Three sets of experiments were conducted to screen for which factors had the greatest effect on granule formation, size distribution,

Granulation is a process within particle technology where a liquid binding agent is added to a powder bed to create larger granules to modify bulk properties for easier processing. Three sets of experiments were conducted to screen for which factors had the greatest effect on granule formation, size distribution, and morphological properties when wet granulating microcrystalline cellulose and water. Previous experiments had identified the different growth regimes within wet granulation, as well as the granule formation mechanisms in single-drop granulation experiments, but little research has been conducted to determine how results extracted from single drop experiments could be used to better understand the first principles that drive high shear granulation. The experiment found that under a liquid solid ratio of 110%, the granule growth rate was linear as opposed to the induction growth regime experienced at higher liquid solid ratios. L/S ratios less than 100% led to a bimodal distribution comprised of large distributions of ungranulated powder and large irregular granules. Insufficient water hampered the growth of granules due to lack of enough water bridges to connect the granules and powder, while the large molecules continued to agglomerate with particles as they rotated around the mixer. The nozzle end was augmented so that drop size as well as drop height could be adjusted and compared to single-drop granulation experiments in proceeding investigations. As individual factors, neither augmentation had significant contributions to granule size, but preliminary screens identified that interaction between increasing L/S ratio and decreasing drop size could lead to narrower distributions of particles as well as greater circularity. Preliminary screening also identified that decreasing the drop height of the nozzle could increase the rate of particle growth during the 110% L/S trials without changing the growth mechanisms, indicating a way to alter the rate of steady-state particle growth. This paper screens for which factors are most pertinent to associating single-drop and wet granulation in order to develop granulation models that can ascertain information from single-drop granulations and predict the shape and size distribution of any wet granulation, without the need to run costly wet granulation experiments.
ContributorsLay, Michael (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2019
156662-Thumbnail Image.png
Description
Amphipathic molecules consist of hydrophilic and hydrophobic regions, which make them surface-active molecules. The uniqueness of these compounds results in inducing low surface tension and self-assembly of the molecules inside a solvent which have been exploited in personal care, the oil industry and agriculture industry. Amphipathic molecules are also used

Amphipathic molecules consist of hydrophilic and hydrophobic regions, which make them surface-active molecules. The uniqueness of these compounds results in inducing low surface tension and self-assembly of the molecules inside a solvent which have been exploited in personal care, the oil industry and agriculture industry. Amphipathic molecules are also used in the healthcare industry as drug delivery systems and other bio-nanotechnology applications.

In this thesis, a novel series of grafted siloxanes have been explored for their probable application in the healthcare industry. The siloxanes are grafted with poly(ethylene glycol) (PEG) and quaternary ammonium salt (QUAT). The effects of varying 1) molar ratios of QUAT to PEG and 2) PEG chain length on contact angle, surface tension, critical micelle concentration (CMC), and micelle assembly properties were studied. In contact angle experiments, the hydrophilicity of grafted siloxanes increased by grafting PEG and QUAT. The amphiphilicity increases and CMC decreases as the PEG chain length shortens. Adding QUAT also reduces CMC. These trends were observed in surface tension and Isothermal Titration Calorimetry experiments. A change in self-assembly behaviour was also observed in Dynamic Light Scattering experiments upon increasing the PEG chain length and its ratio relative to the quaternary ammonium in the siloxane polymer.

These polymers have also been studied for their probable application as a sensitive 1H NMR spectroscopy indicator of tissue oxygenation (pO2) based on spectroscopic spin-lattice relaxometry. The proton imaging of siloxanes to map tissue oxygenation levels (PISTOL) technique is used to map T1 of siloxane polymer, which is correlated to dynamic changes in tissue pO2 at various locations by a linear relationship between pO2 and 1/T1. The T1-weighted echo spin signals were observed in an initial study of siloxanes using the PISTOL technique.

The change in the ratio of QUAT to PEG and the varying chain length of PEG have a significant effect on the physical property characteristics of siloxane graft copolymers. The conclusions and observations of the present work serve as a benchmark study for further development of adaptive polymers and for the creation of integrated “nanoscale” probes for PISTOL oximetry and drug delivery.
ContributorsGupta, Srishti (Author) / Green, Matthew D (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2018
156838-Thumbnail Image.png
Description
Connected health is an emerging field of science and medicine that enables the collection and integration of personal biometrics and environment, contributing to more precise and accurate assessment of the person’s state. It has been proven to help to establish wellbeing as well as prevent, diagnose, and determine the prognosis

Connected health is an emerging field of science and medicine that enables the collection and integration of personal biometrics and environment, contributing to more precise and accurate assessment of the person’s state. It has been proven to help to establish wellbeing as well as prevent, diagnose, and determine the prognosis of chronic diseases. The development of sensing devices for connected health is challenging because devices used in the field of medicine need to meet not only selectivity and sensitivity of detection, but also robustness and performance under hash usage conditions, typically by non-experts in analysis. In this work, the properties and fabrication process of sensors built for sensing devices capable of detection of a biomarker as well as pollutant levels in the environment are discussed. These sensing devices have been developed and perfected with the aim of overcoming the aforementioned challenges and contributing to the evolving connected health field. In the first part of this work, a wireless, solid-state, portable, and continuous ammonia (NH3) gas sensing device is introduced. This device determines the concentration of NH3 contained in a biological sample within five seconds and can wirelessly transmit data to other Bluetooth enabled devices. In this second part of the work, the use of a thermal-based flow meter to assess exhalation rate is evaluated. For this purpose, a mobile device named here mobile indirect calorimeter (MIC) was designed and used to measure resting metabolic rate (RMR) from subjects, which relies on the measure of O2 consumption rate (VO2) and CO2 generation rate (VCO2), and compared to a practical reference method in hospital. In the third part of the work, the sensing selectivity, stability and sensitivity of an aged molecularly imprinted polymer (MIP) selective to the adsorption of hydrocarbons were studied. The optimized material was integrated in tuning fork sensors to detect environmental hydrocarbons, and demonstrated the needed stability for field testing. Finally, the hydrocarbon sensing device was used in conjunction with a MIC to explore potential connections between hydrocarbon exposure level and resting metabolic rate of individuals. Both the hydrocarbon sensing device and the metabolic rate device were under field testing. The correlation between the hydrocarbons and the resting metabolic rate were investigated.
ContributorsLiu, Naiyuan (Author) / Forzani, Erica (Thesis advisor) / Raupp, Gregory (Committee member) / Holloway, Julianne (Committee member) / Thomas, Marylaura (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2018
157189-Thumbnail Image.png
Description
Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of cement, pharmaceuticals, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and

Rotary drums are commonly used for their high heat and mass transfer rates in the manufacture of cement, pharmaceuticals, food, and other particulate products. These processes are difficult to model because the particulate behavior is governed by the process conditions such as particle size, particle size distribution, shape, composition, and operating parameters, such as fill level and rotation rate. More research on heat transfer in rotary drums will increase operating efficiency, leading to significant energy savings on a global scale.

This research utilizes infrared imaging to investigate the effects of fill level and rotation rate on the particle bed hydrodynamics and the average wall-particle heat transfer coefficient. 3 mm silica beads and a stainless steel rotary drum with a diameter of 6 in and a length of 3 in were used at fill levels of 10 %, 17.5 %, and 25 %, and rotation rates of 2 rpm, 6 rpm, and 10 rpm. Two full factorial designs of experiments were completed to understand the effects of these factors in the presence of conduction only (Case 1) and conduction with forced convection (Case 2). Particle-particle friction caused the particle bed to stagnate at elevated temperatures in Case 1, while the inlet air velocity in Case 2 dominated the particle friction effects to maintain the flow profile. The maximum heat transfer coefficient was achieved at a high rotation rate and low fill level in Case 1, and at a high rotation rate and high fill level in Case 2. Heat losses from the system were dominated by natural convection between the hot air in the drum and the external surroundings.
ContributorsBoepple, Brandon (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Holloway, Julianne (Committee member) / Arizona State University (Publisher)
Created2019
134356-Thumbnail Image.png
Description
Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are extensively used as precursors for the preparation of (photo-)catalysts, electrodes, magnetic materials, sorbents, etc. The synthesis typically involves the transformation to the corresponding mixed metal oxide via calcination, resulting in atomically dispersed mixed metal oxides (MMOs). This process alters the

Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are extensively used as precursors for the preparation of (photo-)catalysts, electrodes, magnetic materials, sorbents, etc. The synthesis typically involves the transformation to the corresponding mixed metal oxide via calcination, resulting in atomically dispersed mixed metal oxides (MMOs). This process alters the porosity of the materials, with crucial implications for the performance in many applications. Yet, the mechanisms of pore formation and collapse are poorly understood. Combining an integrated in situ and ex situ characterization approach, here we follow the evolution of porosity changes during the thermal decomposition of LDHs integrating different divalent (Mg, Ni) and trivalent (Al, Ga) metals. Variations in porous properties determined by high-resolution argon sorption are linked to the morphological and compositional changes in the samples by in situ transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, which is facilitated by the synthesis of well crystallized LDHs of large crystal size. The observations are correlated with the phase changes identified by X-ray diffraction, the mass losses evidenced by thermogravimetric analysis, the structural changes determined by infrared and nuclear magnetic resonance spectroscopy, and the pore connectivity analyzed by positron annihilation spectroscopy. The findings show that the multimetallic nature of the LDH governs the size and distribution (geometry, location, and connectivity) of the mesopores developed, which is controlled by the crystallization of the MMO phase, providing key insights for the improved design of porous mixed metal oxides.
ContributorsMurty, Rohan Aditya (Author) / Deng, Shuguang (Thesis director) / Nielsen, David R. (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
155609-Thumbnail Image.png
Description
Organic optoelectronics include a class of devices synthesized from carbon containing ‘small molecule’ thin films without long range order crystalline or polymer structure. Novel properties such as low modulus and flexibility as well as excellent device performance such as photon emission approaching 100% internal quantum efficiency have accelerated research

Organic optoelectronics include a class of devices synthesized from carbon containing ‘small molecule’ thin films without long range order crystalline or polymer structure. Novel properties such as low modulus and flexibility as well as excellent device performance such as photon emission approaching 100% internal quantum efficiency have accelerated research in this area substantially. While optoelectronic organic light emitting devices have already realized commercial application, challenges to obtain extended lifetime for the high energy visible spectrum and the ability to reproduce natural white light with a simple architecture have limited the value of this technology for some display and lighting applications. In this research, novel materials discovered from a systematic analysis of empirical device data are shown to produce high quality white light through combination of monomer and excimer emission from a single molecule: platinum(II) bis(methyl-imidazolyl)toluene chloride (Pt-17). Illumination quality achieved Commission Internationale de L’Éclairage (CIE) chromaticity coordinates (x = 0.31, y = 0.38) and color rendering index (CRI) > 75. Further optimization of a device containing Pt-17 resulted in a maximum forward viewing power efficiency of 37.8 lm/W on a plain glass substrate. In addition, accelerated aging tests suggest high energy blue emission from a halogen-free cyclometalated platinum complex could demonstrate degradation rates comparable to known stable emitters. Finally, a buckling based metrology is applied to characterize the mechanical properties of small molecule organic thin films towards understanding the deposition kinetics responsible for an elastic modulus that is both temperature and thickness dependent. These results could contribute to the viability of organic electronic technology in potentially flexible display and lighting applications. The results also provide insight to organic film growth kinetics responsible for optical, mechanical, and water uptake properties relevant to engineering the next generation of optoelectronic devices.
ContributorsBakken, Nathan (Author) / Li, Jian (Thesis advisor) / Dai, Lenore (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Lind, Mary (Committee member) / Arizona State University (Publisher)
Created2017