Matching Items (7)
Filtering by

Clear all filters

151240-Thumbnail Image.png
Description
Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study

Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.
ContributorsSanyal, Sriya (Author) / Dai, Lenore L. (Thesis advisor) / Jiang, Hanqing (Committee member) / Lind, Mary L. (Committee member) / Phelan, Patrick (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2012
156565-Thumbnail Image.png
Description
Thermodynamic development and balance of plant study is completed for a 30 MW solar thermochemical water splitting process that generates hydrogen gas and electric power. The generalized thermodynamic model includes 23 components and 45 states. Quasi-steady state simulations are completed for design point system sizing, annual performance analysis and sensitivity

Thermodynamic development and balance of plant study is completed for a 30 MW solar thermochemical water splitting process that generates hydrogen gas and electric power. The generalized thermodynamic model includes 23 components and 45 states. Quasi-steady state simulations are completed for design point system sizing, annual performance analysis and sensitivity analysis. Detailed consideration is given to water splitting reaction kinetics with governing equations generalized for use with any redox-active metal oxide material. Specific results for Ceria illustrate particle reduction in two solar receivers for target oxygen partial pressure of 10 Pa and particle temperature of 1773 K at a design point DNI of 900 W/m2. Sizes of the recuperator, steam generator and hydrogen separator are calculated at the design point DNI to achieve 100,000 kg of hydrogen production per day from the plant. The total system efficiency of 39.52% is comprised of 50.7% hydrogen fraction and 19.62% electrical fraction. Total plant capital costs and operating costs are estimated to equate a hydrogen production cost of $4.40 per kg for a 25-year plant life. Sensitivity analysis explores the effect of environmental parameters and design parameters on system performance and cost. Improving recuperator effectiveness from 0.7 to 0.8 is a high-value design modification resulting in a 12.1% decrease in hydrogen cost for a modest 2.0% increase in plant $2.85M. At the same time, system efficiency is relatively inelastic to recuperator effectiveness because 81% of excess heat is recovered from the system for electricity production 39 MWh/day and revenue is $0.04 per kWh. Increasing water inlet pressure up to 20 bar reduces the size and cost of super heaters but further pressure rises increasing pump at a rate that outweighs super heater cost savings.
ContributorsBudama, Vishnu Kumar (Author) / Johnson, Nathan (Thesis advisor) / Stechel, Ellen (Committee member) / Rykaczewski, Konrad (Committee member) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2018
149480-Thumbnail Image.png
Description
Portable devices rely on battery systems that contribute largely to the overall device form factor and delay portability due to recharging. Membraneless microfluidic fuel cells are considered as the next generation of portable power sources for their compatibility with higher energy density reactants. Microfluidic fuel cells are potentially cost effective

Portable devices rely on battery systems that contribute largely to the overall device form factor and delay portability due to recharging. Membraneless microfluidic fuel cells are considered as the next generation of portable power sources for their compatibility with higher energy density reactants. Microfluidic fuel cells are potentially cost effective and robust because they use low Reynolds number flow to maintain fuel and oxidant separation instead of ion exchange membranes. However, membraneless fuel cells suffer from poor efficiency due to poor mass transport and Ohmic losses. Current microfluidic fuel cell designs suffer from reactant cross-diffusion and thick boundary layers at the electrode surfaces, which result in a compromise between the cell's power output and fuel utilization. This dissertation presents novel flow field architectures aimed at alleviating the mass transport limitations. The first architecture provides a reactant interface where the reactant diffusive concentration gradients are aligned with the bulk flow, mitigating reactant mixing through diffusion and thus crossover. This cell also uses porous electro-catalysts to improve electrode mass transport which results in higher extraction of reactant energy. The second architecture uses porous electrodes and an inert conductive electrolyte stream between the reactants to enhance the interfacial electrical conductivity and maintain complete reactant separation. This design is stacked hydrodynamically and electrically, analogous to membrane based systems, providing increased reactant utilization and power. These fuel cell architectures decouple the fuel cell's power output from its fuel utilization. The fuel cells are tested over a wide range of conditions including variation of the loads, reactant concentrations, background electrolytes, flow rates, and fuel cell geometries. These experiments show that increasing the fuel cell power output is accomplished by increasing reactant flow rates, electrolyte conductivity, and ionic exchange areas, and by decreasing the spacing between the electrodes. The experimental and theoretical observations presented in this dissertation will aid in the future design and commercialization of a new portable power source, which has the desired attributes of high power output per weight and volume and instant rechargeability.
ContributorsSalloum, Kamil S (Author) / Posner, Jonathan D (Thesis advisor) / Adrian, Ronald (Committee member) / Christen, Jennifer (Committee member) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2010
189317-Thumbnail Image.png
Description
The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only

The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only when a light source is available. In this study, the efficacy of Direct Ink Written (DIW) luminous structures for H2S conversion has been investigated, with the primary objective of sustaining H2S conversion when a light source has been terminated. Additionally, as a secondary objective, improving light distribution within monoliths for photocatalytic applications is desired. The intrinsic illumination of the 3D printed monoliths developed in this work could serve as an alternative to monolith systems that employ light transmitting fiber optic cables that have been previously proposed to improve light distribution in photocatalytic systems. The results that were obtained demonstrate that H2S favorable adsorbents, a wavelength compatible long afterglow phosphor, and a photocatalyst can form viscoelastic inks that are printable into DIW luminous monolithic contactors. Additionally, rheological, optical and porosity analyses conducted, provide design guidelines for future studies seeking to develop DIW luminous monoliths from compatible catalyst-phosphor pairs. The monoliths that were developed demonstrate not only improved conversion when exposed to light, but more significantly, extended H2S conversion from the afterglow of the monoliths when an external light source was removed. Lastly, considering growing interests in attaining a global circular economy, the techno-economic feasibility of a H2S-CO2 co-utilization plant leveraging hydrogen from H2S photocatalysis as a feed source for a downstream CO2 methanation plant has been assessed. The work provides preliminary information to guide future chemical kinetic design characteristics that are important to strive for if using H2S as a source of hydrogen in a CO2 methanation facility.
ContributorsAbdullahi, Adnan (Author) / Andino, Jean (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Bhate, Dhruv (Committee member) / Wang, Robert (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2023
171946-Thumbnail Image.png
Description
Siloxane, a common contaminant present in biogas, is known for adverse effects on cogeneration prime movers. In this work, the solid oxide fuel cell (SOFC) nickel-yttria stabilized zirconia (Ni-YSZ) anode degradation due to poisoning by siloxane was investigated. For this purpose, experiments with different fuels, different deposition substrate materials, different

Siloxane, a common contaminant present in biogas, is known for adverse effects on cogeneration prime movers. In this work, the solid oxide fuel cell (SOFC) nickel-yttria stabilized zirconia (Ni-YSZ) anode degradation due to poisoning by siloxane was investigated. For this purpose, experiments with different fuels, different deposition substrate materials, different structure of contamination siloxane (cyclic and linear) and entire failure process are conducted in this study. The electrochemical and material characterization methods, such as Electrochemical Impedance Spectroscopy (EIS), Scanning Electron Microscope- Wavelength Dispersive Spectrometers (SEM-WDS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), and Raman spectroscopy, were applied to investigate the anode degradation behavior. The electrochemical characterization results show that the SOFCs performance degradation caused by siloxane contamination is irreversible under bio-syngas condition. An equivalent circuit model (ECM) is developed based on electrochemical characterization results. Based on the Distribution of Relaxation Time (DRT) method, the detailed microstructure parameter changes are evaluated corresponding to the ECM results. The results contradict the previously proposed siloxane degradation mechanism as the experimental results show that water can inhibit anode deactivation. For anode materials, Ni is considered a major factor in siloxane deposition reactions in Ni-YSZ anode. Based on the results of XPS, XRD and WDS analysis, an initial layer of carbon deposition develops and is considered a critical process for the siloxane deposition reaction. Based on the experimental results in this study and previous studies about siloxane deposition on metal oxides, the proposed siloxane deposition process occurs in stages consisting of the siloxane adsorption, initial carbon deposition, siloxane polymerization and amorphous silicon dioxide deposition.
ContributorsTian, Jiashen (Author) / Milcarek, Ryan J. (Thesis advisor) / Muhich, Christopher (Committee member) / Wang, Liping (Committee member) / Phelan, Patrick (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2022
158546-Thumbnail Image.png
Description
As experiencing hot months and thermal stresses is becoming more common, chemically protective fabrics must adapt and provide protections while reducing the heat stress to the body. These concerns affect first responders, warfighters, and workers regularly surrounded by hazardous chemical agents. While adapting traditional garments with cooling devices provides one

As experiencing hot months and thermal stresses is becoming more common, chemically protective fabrics must adapt and provide protections while reducing the heat stress to the body. These concerns affect first responders, warfighters, and workers regularly surrounded by hazardous chemical agents. While adapting traditional garments with cooling devices provides one route to mitigate this issue, these cooling methods add bulk, are time limited, and may not be applicable in locations without logistical support. Here I take inspiration from nature to guide the development of smart fabrics that have high breathability, but self-seal on exposure to target chemical(s), providing a better balance between cooling and protection.

Natural barrier materials were explored as a guide, focusing specifically on prickly pear cacti. These cacti have a natural waxy barrier that provides protection from dehydration and physically changes shape to modify surface wettability and water vapor transport. The results of this study provided a basis for a shape changing polymer to be used to respond directly to hazardous chemicals, swelling to contain the agent.

To create a stimuli responsive material, a novel superabsorbent polymer was synthesized, based on acrylamide chemistry. The polymer was tested for swelling properties in a wide range of organic liquids and found to highly swell in moderately polar organic liquids. To help predict swelling in untested liquids, the swelling of multiple test liquids were compared with their thermodynamic properties to observe trends. As the smart fabric needs to remain breathable to allow evaporative cooling, while retaining functionality when soaked with sweat, absorption of water, as well as that of an absorbing liquid in the presence of water were tested.

Micron sized particles of the developed polymer were deposited on a plastic mesh with pore size and open area similar to common clothing fabric to establish the proof of concept of using a breathable barrier to provide chemical protection. The polymer coated mesh showed minimal additional resistance to water vapor transport, relative to the mesh alone, but blocked more than 99% of a xylene aerosol from penetrating the barrier.
ContributorsManning, Kenneth (Author) / Rykaczewski, Konrad (Thesis advisor) / Burgin, Timothy (Committee member) / Emady, Heather (Committee member) / Green, Matthew (Committee member) / Thomas, Marylaura (Committee member) / Arizona State University (Publisher)
Created2020
161898-Thumbnail Image.png
Description
Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used

Desorption processes are an important part of all processes which involve utilization of solid adsorbents such as adsorption cooling, sorption thermal energy storage, and drying and dehumidification processes and are inherently energy-intensive. Here, how those energy requirements can be reduced through the application of ultrasound for three widely used adsorbents namely zeolite 13X, activated alumina and silica gel is investigated. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant overall input power of 20 and 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. Duplicate experiments were performed at three nominal frequencies of 28, 40 and 80 kHz to observe the influence of frequency on regeneration dynamics. Regarding moisture removal, application of ultrasound results in higher desorption rate compared to a non-ultrasound process. A nonlinear inverse proportionality was observed between the effectiveness of ultrasound and the frequency at which it is applied. Based on the variation of desorption dynamics with ultrasonic power and frequency, three mechanisms of reduced adsorbate adsorption potential, increased adsorbate surface energy and enhanced mass diffusion are proposed. Two analytical models that describe the desorption process were developed based on the experimental data from which novel efficiency metrics were proposed, which can be employed to justify incorporating ultrasound in regeneration and drying processes.
ContributorsDaghooghi Mobarakeh, Hooman (Author) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Wang, Robert (Committee member) / Calhoun, Ronald (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2021