Matching Items (3)
Filtering by

Clear all filters

133722-Thumbnail Image.png
Description
One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain

One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain on the cells. This study aimed to identify aromatic-sensitive native promoters and heterologous biosensors for construction of closed-loop control of efflux pump expression in E. coli. Using a promoter library constructed by Zaslaver et al., activation was measured through GFP output. Promoters were evaluated for their sensitivity to the addition of one of four aromatic compounds, their "leaking" of signal, and their induction threshold. Out of 43 targeted promoters, 4 promoters (cmr, mdtG, yahN, yajR) for styrene oxide, 2 promoters (mdtG, yahN) for styrene, 0 promoters for 2-phenylethanol, and 1 promoter for phenol (pheP) were identified as ideal control elements in aromatic bioproduction. In addition, a series of three biosensors (NahR, XylS, DmpR) known to be inducible by other aromatics were screened against styrene oxide, 2-phenylethanol, and phenol. The targeted application of these biosensors is aromatic-induced activation of linked efflux pumps. All three biosensors responded strongly in the presence of styrene oxide and 2-phenylethanol, with minor activation in the presence of phenol. Bioproduction of aromatics continues to gain traction in the biotechnology industry, and the continued discovery of aromatic-inducible elements will be essential to effective pathway control.
ContributorsXu, Jimmy (Author) / Nielsen, David (Thesis director) / Wang, Xuan (Committee member) / School of Life Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134356-Thumbnail Image.png
Description
Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are extensively used as precursors for the preparation of (photo-)catalysts, electrodes, magnetic materials, sorbents, etc. The synthesis typically involves the transformation to the corresponding mixed metal oxide via calcination, resulting in atomically dispersed mixed metal oxides (MMOs). This process alters the

Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are extensively used as precursors for the preparation of (photo-)catalysts, electrodes, magnetic materials, sorbents, etc. The synthesis typically involves the transformation to the corresponding mixed metal oxide via calcination, resulting in atomically dispersed mixed metal oxides (MMOs). This process alters the porosity of the materials, with crucial implications for the performance in many applications. Yet, the mechanisms of pore formation and collapse are poorly understood. Combining an integrated in situ and ex situ characterization approach, here we follow the evolution of porosity changes during the thermal decomposition of LDHs integrating different divalent (Mg, Ni) and trivalent (Al, Ga) metals. Variations in porous properties determined by high-resolution argon sorption are linked to the morphological and compositional changes in the samples by in situ transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, which is facilitated by the synthesis of well crystallized LDHs of large crystal size. The observations are correlated with the phase changes identified by X-ray diffraction, the mass losses evidenced by thermogravimetric analysis, the structural changes determined by infrared and nuclear magnetic resonance spectroscopy, and the pore connectivity analyzed by positron annihilation spectroscopy. The findings show that the multimetallic nature of the LDH governs the size and distribution (geometry, location, and connectivity) of the mesopores developed, which is controlled by the crystallization of the MMO phase, providing key insights for the improved design of porous mixed metal oxides.
ContributorsMurty, Rohan Aditya (Author) / Deng, Shuguang (Thesis director) / Nielsen, David R. (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135440-Thumbnail Image.png
Description
Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function

Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function alleles at transformation loci and an increased mutational load from recombining with DNA from dead cells create additional costs to transformation. These costs have been shown to outweigh many of the benefits of recombination under a variety of likely parameters. We investigate an additional proposed benefit of sexual recombination, the Red Queen hypothesis, as it relates to bacterial transformation. Here we describe a computational model showing that host-pathogen coevolution may provide a large selective benefit to transformation and allow transforming cells to invade an environment dominated by otherwise equal non-transformers. Furthermore, we observe that host-pathogen dynamics cause the selection pressure on transformation to vary extensively in time, explaining the tight regulation and wide variety of rates observed in naturally competent bacteria. Host-pathogen dynamics may explain the evolution and maintenance of natural competence despite its associated costs.
ContributorsPalmer, Nathan David (Author) / Cartwright, Reed (Thesis director) / Wang, Xuan (Committee member) / Sievert, Chris (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05