Matching Items (43)
Filtering by

Clear all filters

137110-Thumbnail Image.png
Description
This study sought to identify traits that act as possible predictors of academic science proficiency of highly gifted adolescent students. A combination of cognitive, personality, and conative traits were selected for evaluation as predictors of scientific proficiency using student General Ability Index (GAI), Revised NEO Personality Index (NEO-PI R), and

This study sought to identify traits that act as possible predictors of academic science proficiency of highly gifted adolescent students. A combination of cognitive, personality, and conative traits were selected for evaluation as predictors of scientific proficiency using student General Ability Index (GAI), Revised NEO Personality Index (NEO-PI R), and Kolbe Index scores to evaluate each, respectively. Statistical correlational analyses revealed that high expressions of the conative trait Fact Finder and the personality traits Ideas and Straight-forwardness predicted higher degrees of academic science proficiency. In contrast, lower expressions of the personality traits Excitement Seeking and Order predicted higher degrees of scientific proficiency. Further, stepwise regression confirmed that the NEO-PI R facets of Excitement Seeking and Ideas traits were significant predictors of science proficiency and suggested that the personality trait Vulnerability may also be a predictor. The repeated appearance of the Excitement Seeking and Ideas facets and the dependence of the other identified traits suggests that these traits were the most promising possible predictors of scientific proficiency in highly gifted students and should be the target of future research.
ContributorsRoss, Christian Hamilton (Author) / Lansdowne, Kimberly (Thesis director) / Oakes, Wendy (Committee member) / Young, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137190-Thumbnail Image.png
Description
This thesis determines how first ladies portray their role through their speeches and whether this role meets partisan voters' expectations. Research includes an examination of first ladies' biographical information, content analysis of various speeches, and analysis of public polls to determine Republicans' and Democrats' role expectations and the role that

This thesis determines how first ladies portray their role through their speeches and whether this role meets partisan voters' expectations. Research includes an examination of first ladies' biographical information, content analysis of various speeches, and analysis of public polls to determine Republicans' and Democrats' role expectations and the role that first ladies portray. Analysis shows that first ladies meet some of their partisan voters' expectations and that party identification greatly influences the role they enact.
ContributorsMcManus-Spitzer, Anne (Author) / Herrera, Richard (Thesis director) / Walker, Stephen (Committee member) / Carol-Lynn, Bower (Committee member) / Barrett, The Honors College (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / School of Politics and Global Studies (Contributor)
Created2014-05
136846-Thumbnail Image.png
Description
This thesis deals primarily with contemporary Brazilian civil-military relations. For most of the 20th century Brazil’s political system was stuck in a cycle of repeated military intervention. At present, Brazil operates as an electoral democracy and has kept the military out of politics since 1985. In order to understand the

This thesis deals primarily with contemporary Brazilian civil-military relations. For most of the 20th century Brazil’s political system was stuck in a cycle of repeated military intervention. At present, Brazil operates as an electoral democracy and has kept the military out of politics since 1985. In order to understand the likelihood of another coup d’état, this thesis considers threats to the military’s corporate interests and deflations of the government’s political legitimacy within Brazil. Given the lack of significant threats to the military’s self-interest and the absence of serious legitimacy deflations, the Brazilian government appears unlikely to have a coup d’état in the near future. It is, however, important to remember that the 2014 World Cup and 2016 Summer Olympics could challenge Brazil’s current political stability and alter the likelihood of military intervention.
Created2014-05
132374-Thumbnail Image.png
Description
Improvement in carbon capture percentage was calculated as most effective in 10 mg/L-MEA BG-11 media, with improvement in carbon capture of 1.012% over the control. In studying the effect of agitation at 150 revolutions-per-minute (RPM) with a magnetic stir bar, it was found that mass transfer actually decreased. Future investigations

Improvement in carbon capture percentage was calculated as most effective in 10 mg/L-MEA BG-11 media, with improvement in carbon capture of 1.012% over the control. In studying the effect of agitation at 150 revolutions-per-minute (RPM) with a magnetic stir bar, it was found that mass transfer actually decreased. Future investigations are warranted to fully characterize the effect of different alkanolamine types, concentrations, and mixing regimens on mass transfer of CO2. In this thesis, emphasis was placed on experimental setup to allow for a discussion of the unexpected characteristics of the findings of the mass transfer experiments. Understanding the effect of experimental setup on mass transfer will be important in designing more effective methods of CO2 absorption for improving growth of cyanobacteria.
ContributorsMcallister, Cameron William (Author) / Nielsen, David (Thesis director) / Nannenga, Brent (Committee member) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133663-Thumbnail Image.png
Description
This essay explores the role of religion, science, and the secular in contemporary society by showing their connection to social and political legitimacy as a result of historical processes. In Chapter One, the essay presents historical arguments, particularly linguistic, which confirm science and religion as historically created categories without timeless

This essay explores the role of religion, science, and the secular in contemporary society by showing their connection to social and political legitimacy as a result of historical processes. In Chapter One, the essay presents historical arguments, particularly linguistic, which confirm science and religion as historically created categories without timeless or essential differences. Additionally, the current institutional separation of science and religion was politically motivated by the changing power structures following the Protestant Reformation. In Chapter Two, the essay employs the concept of the modern social imaginary to show how our modern concept of the political and the secular subtly reproduce the objectified territories of science and religion and thus the boundary maintenance dialectic which dominates science-religion discourse. Chapter Three argues that ‘religious’ worldviews contain genuine metaphysical claims which do not recognizably fit into these modern social categories. Given the destabilizing forces of globalization and information technology upon the political authority of the nation-state, the way many conceptualize of these objects religion, science, and the secular will change as well.
Created2018-05
134431-Thumbnail Image.png
Description
The objective of this research study is to assess the effectiveness of a poster-based messaging campaign and engineering-based activities for middle school and high school students to encourage students to explore and to pursue chemical engineering. Additionally, presentations are incorporated into both methods to provide context and improve understanding of

The objective of this research study is to assess the effectiveness of a poster-based messaging campaign and engineering-based activities for middle school and high school students to encourage students to explore and to pursue chemical engineering. Additionally, presentations are incorporated into both methods to provide context and improve understanding of the presented poster material or activity. Pre-assessments and post-assessments are the quantitative method of measuring effectiveness. For the poster campaign, ASU juniors and seniors participated in the poster campaign by producing socially relevant messages about their research or aspirations to address relevant chemical engineering problems. For the engineering-based activity, high school students participated in an Ira A. Fulton Schools of Engineering program "Young Engineers Shape the World" in which the students participated in six-hour event learning about four engineering disciplines, and the chemical engineering presentation and activity was conducted in one of the sessions. Pre-assessments were given at the beginning of the event, and the post-assessments were provided towards the end of the event. This honors thesis project will analyze the collected data.
ContributorsBueno, Daniel Tolentino (Author) / Ganesh, Tirupalavanam (Thesis director) / Parker, Hope (Committee member) / Chemical Engineering Program (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Heterogeneous musculoskeletal tissues, such as the tendon-bone junction, is crucial for transferring mechanical loading during human physical activity. This region, also known as the enthesis, is composed of a complex extracellular matrix with gradient fiber orientations and chemistries. These different physical and chemical properties are crucial in providing the support

Heterogeneous musculoskeletal tissues, such as the tendon-bone junction, is crucial for transferring mechanical loading during human physical activity. This region, also known as the enthesis, is composed of a complex extracellular matrix with gradient fiber orientations and chemistries. These different physical and chemical properties are crucial in providing the support that these junctions need in handling mechanical loading of everyday activities. Currently, surgical restorative procedures for a torn enthesis entail a very invasive technique of suturing the torn tendon onto the bone. This results in improper reinjury. To circumvent this issue, one common strategy within tissue engineering is to introduce a biomaterial scaffold which acts as a template for the local damaged tissue. Electrospinning can be utilized to fabricate a fibrous material to recapitulate the structure of the extracellular matrix. Currently electrospinning techniques only allow the creation of scaffold that consists of only one orientation and material. In this work, we investigated a multicomponent, magnetically assisted, electrospinning technique to fabricate a fiber alignment and chemical gradient scaffold for tendon-bone repair
ContributorsLe, Minh (Author) / Holloway, Julianne (Thesis director) / Green, Matthew (Committee member) / W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134847-Thumbnail Image.png
Description
The following paper discusses the potential for Designed Ankyrin Repeat Proteins (DARPin) use as a diagnostic tool for neurodegenerative diseases in particular Alzheimer's disease (AD) and Parkinson's disease (PD). The two structures investigated for AD and PD were ADC7 and PDC1. Plasmid transformation was performed in order to grow the

The following paper discusses the potential for Designed Ankyrin Repeat Proteins (DARPin) use as a diagnostic tool for neurodegenerative diseases in particular Alzheimer's disease (AD) and Parkinson's disease (PD). The two structures investigated for AD and PD were ADC7 and PDC1. Plasmid transformation was performed in order to grow the DARPin in E. coli for simple expression. Following growth and purification the proteins were validated using SDS-PAGE, Western Blot, BCA and indirect sandwich ELISA using transgenic mouse brain tissue. Targeted functionality of the DARPin structure was utilized during characterization methods to ensure the efficacy of the protein as a diagnostic for the respective disease targets. Both the ADC7 and PDC1 demonstrated improved binding with transgenic mice compared to wild type with a maximum 1.8 and 1.7 relative ratio, respectively. Additionally, both of the proteins demonstrated exclusive binding to their disease target and did not provide false positive results.
ContributorsTindell, John (Co-author) / Card, Emma (Co-author) / Sierks, Michael (Thesis director) / Nannenga, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135407-Thumbnail Image.png
Description
This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time

This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-ToF) was used to help verify the structure of both peptides, which were purified using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The next steps in the research are to attach the peptides to a micelle and determine their impact on micelle stability.
ContributorsMoe, Anna Marguerite (Author) / Green, Matthew (Thesis director) / Jones, Anne (Committee member) / Sullivan, Millicent (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
157715-Thumbnail Image.png
Description
Aromatic compounds have traditionally been generated via petroleum feedstocks and have wide ranging applications in a variety of fields such as cosmetics, food, plastics, and pharmaceuticals. Substantial improvements have been made to sustainably produce many aromatic chemicals from renewable sources utilizing microbes as bio-factories. By assembling and optimizing

Aromatic compounds have traditionally been generated via petroleum feedstocks and have wide ranging applications in a variety of fields such as cosmetics, food, plastics, and pharmaceuticals. Substantial improvements have been made to sustainably produce many aromatic chemicals from renewable sources utilizing microbes as bio-factories. By assembling and optimizing native and non-native pathways to produce natural and non-natural bioproducts, the diversity of biochemical aromatics which can be produced is constantly being improved upon. One such compound, 2-Phenylethanol (2PE), is a key molecule used in the fragrance and food industries, as well as a potential biofuel. Here, a novel, non-natural pathway was engineered in Escherichia coli and subsequently evaluated. Following strain and bioprocess optimization, accumulation of inhibitory acetate byproduct was reduced and 2PE titers approached 2 g/L – a ~2-fold increase over previously implemented pathways in E. coli. Furthermore, a recently developed mechanism to

allow E. coli to consume xylose and glucose, two ubiquitous and industrially relevant microbial feedstocks, simultaneously was implemented and systematically evaluated for its effects on L-phenylalanine (Phe; a precursor to many microbially-derived aromatics such as 2PE) production. Ultimately, by incorporating this mutation into a Phe overproducing strain of E. coli, improvements in overall Phe titers, yields and sugar consumption in glucose-xylose mixed feeds could be obtained. While upstream efforts to improve precursor availability are necessary to ultimately reach economically-viable production, the effect of end-product toxicity on production metrics for many aromatics is severe. By utilizing a transcriptional profiling technique (i.e., RNA sequencing), key insights into the mechanisms behind styrene-induced toxicity in E. coli and the cellular response systems that are activated to maintain cell viability were obtained. By investigating variances in the transcriptional response between styrene-producing cells and cells where styrene was added exogenously, better understanding on how mechanisms such as the phage shock, heat-shock and membrane-altering responses react in different scenarios. Ultimately, these efforts to diversify the collection of microbially-produced aromatics, improve intracellular precursor pools and further the understanding of cellular response to toxic aromatic compounds, give insight into methods for improved future metabolic engineering endeavors.
ContributorsMachas, Michael (Author) / Nielsen, David R (Thesis advisor) / Haynes, Karmella (Committee member) / Wang, Xuan (Committee member) / Nannenga, Brent (Committee member) / Varman, Arul (Committee member) / Arizona State University (Publisher)
Created2019